• Title/Summary/Keyword: Fast Reactors

Search Result 146, Processing Time 0.157 seconds

Investigation of flow-regime characteristics in a sloshing pool with mixed-size solid particles

  • Cheng, Songbai;Jin, Wenhui;Qin, Yitong;Zeng, Xiangchu;Wen, Junlang
    • Nuclear Engineering and Technology
    • /
    • 제52권5호
    • /
    • pp.925-936
    • /
    • 2020
  • To ascertain the characteristics of pool sloshing behavior that might be encountered during a core disruptive accident of sodium-cooled fast reactors, in our earlier work several series of experiments were conducted under various scenarios including the condition with mono-sized solid particles. It is found that under the particle-bed condition, three typical flow regimes (namely the bubble-impulsion dominant regime, the transitional regime and the bed-inertia dominant regime) could be identified and a flow-regime model (base model) has been even successfully established to estimate the regime transition. In this study, aimed to further understand this behavior at more realistic particle-bed conditions, a series of simulated experiments is newly carried out using mixed-size particles. Through analyses, it is verified that for present scenario, by applying the area mean diameter, our previously-developed base model can provide the most appropriate predictive results among the various effective diameters. To predict the regime transition with a form of extension scheme, a correction factor which is based on the volume-mean diameter and the degree of convergence in particle-size distribution is suggested and validated. The conducted analyses in this work also indicate that under certain conditions, the potential separation between different particle components might exist during the sloshing process.

Assessment of three European fuel performance codes against the SUPERFACT-1 fast reactor irradiation experiment

  • Luzzi, L.;Barani, T.;Boer, B.;Cognini, L.;Nevo, A. Del;Lainet, M.;Lemehov, S.;Magni, A.;Marelle, V.;Michel, B.;Pizzocri, D.;Schubert, A.;Uffelen, P. Van;Bertolus, M.
    • Nuclear Engineering and Technology
    • /
    • 제53권10호
    • /
    • pp.3367-3378
    • /
    • 2021
  • The design phase and safety assessment of Generation IV liquid metal-cooled fast reactors calls for the improvement of fuel pin performance codes, in particular the enhancement of their predictive capabilities towards uranium-plutonium mixed oxide fuels and stainless-steel cladding under irradiation in fast reactor environments. To this end, the current capabilities of fuel performance codes must be critically assessed against experimental data from available irradiation experiments. This work is devoted to the assessment of three European fuel performance codes, namely GERMINAL, MACROS and TRANSURANUS, against the irradiation of two fuel pins selected from the SUPERFACT-1 experimental campaign. The pins are characterized by a low enrichment (~ 2 wt.%) of minor actinides (neptunium and americium) in the fuel, and by plutonium content and cladding material in line with design choices envisaged for liquid metal-cooled Generation IV reactor fuels. The predictions of the codes are compared to several experimental measurements, allowing the identification of the current code capabilities in predicting fuel restructuring, cladding deformation, redistribution of actinides and volatile fission products. The integral assessment against experimental data is complemented by a code-to-code benchmark focused on the evolution of quantities of engineering interest over time. The benchmark analysis points out the differences in the code predictions of fuel central temperature, fuel-cladding gap width, cladding outer radius, pin internal pressure and fission gas release and suggests potential modelling development paths towards an improved description of the fuel pin behaviour in fast reactor irradiation conditions.

무격막식 해수 전기분해 방식을 통한 배연 탈질에 관한 연구 (A Study on the NOx Reduction of Flue Gas Using Un-divided Electrolysis of Seawater)

  • 김태우;최수진;김종화;송주영
    • Korean Chemical Engineering Research
    • /
    • 제50권5호
    • /
    • pp.825-829
    • /
    • 2012
  • 본 연구에서는 전기분해 처리된 해수의 유효염소농도와 온도에 의한 배가스 중 NO의 산화 특성을 실험적으로 살펴보았다. 실험은 무격막식 전해수가 채워진 버블링 반응기에 반응가스를 공급하여 NO 농도의 변화를 분석하였다. 폐순환 전기분해 시스템의 경우 정전류 조건에서 전해 시간이 길어질수록 전해수 내에 유효염소농도가 상승하였고, 전해수의 유효염소농도가 높을수록 NO가 $NO_2$로 산화되는 반응이 촉진됨을 확인하였다. 또한 동일한 유효염소농도를 가지는 전해수의 경우에도 온도가 높을수록 NO 산화율이 증가하였다.

ADVANCED TEST REACTOR TESTING EXPERIENCE - PAST, PRESENT AND FUTURE

  • Marshall Frances M.
    • Nuclear Engineering and Technology
    • /
    • 제38권5호
    • /
    • pp.411-416
    • /
    • 2006
  • The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is one of the world's premier test reactors for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The physical configuration of the ATR, a 4-leaf clover shape, allows the reactor to be operated at different power levels in the comer 'lobes' to allow for different testing conditions for multiple simultaneous experiments. The combination of high flux (maximum thermal neutron fluxes of 1E15 neutrons per square centimeter per second and maximum fast [E>1.0 MeV] neutron fluxes of 5E14 neutrons per square centimeter per second) and large test volumes (up to 122 cm long and 12.7 cm diameter) provide unique testing opportunities. The current experiments in the ATR are for a variety of test sponsors - US government, foreign governments, private researchers, and commercial companies needing neutron irradiation services. There are three basic types of test configurations in the ATR. The simplest configuration is the sealed static capsule, which places the capsule in direct contact with the primary coolant. The next level of experiment complexity is an instrumented lead experiment, which allows for active control of experiment conditions during the irradiation. The most complex experiment is the pressurized water loop, in which the test sample can be subjected to the exact environment of a pressurized water reactor. For future research, some ATR modifications and enhancements are currently planned. This paper provides more details on some of the ATR capabilities, key design features, experiments, and future plans.

PREDICTION OF FREE SURFACE FLOW ON CONTAINMENT FLOOR USING A SHALLOW WATER EQUATION SOLVER

  • Bang, Young-Seok;Lee, Gil-Soo;Huh, Byung-Gil;Oh, Deog-Yeon;Woo, Sweng-Woong
    • Nuclear Engineering and Technology
    • /
    • 제41권8호
    • /
    • pp.1045-1052
    • /
    • 2009
  • A calculation model is developed to predict the transient free surface flow on the containment floor following a loss-of-coolant accident (LOCA) of pressurized water reactors (PWR) for the use of debris transport evaluation. The model solves the two-dimensional Shallow Water Equation (SWE) using a finite volume method (FVM) with unstructured triangular meshes. The numerical scheme is based on a fully explicit predictor-corrector method to achieve a fast-running capability and numerical accuracy. The Harten-Lax-van Leer (HLL) scheme is used to reserve a shock-capturing capability in determining the convective flux term at the cell interface where the dry-to-wet changing proceeds. An experiment simulating a sudden break of a water reservoir with L-shape open channel is calculated for validation of the present model. It is shown that the present model agrees well with the experiment data, thus it can be justified for the free surface flow with accuracy. From the calculation of flow field over the simplified containment floor of APR1400, the important phenomena of free surface flow including propagations and interactions of waves generated by local water level distribution and reflection with a solid wall are found and the transient flow rates entering the Holdup Volume Tank (HVT) are obtained within a practical computational resource.

전산유체역학을 이용한 소듐-소듐 열교환기 설계코드의 검증 (VALIDATION OF A DESIGN CODE FOR SODIUM-TO-SODIUM HEAT EXCHANGERS BY UTILIZING COMPUTATIONAL FLUID DYNAMICS)

  • 김대희;어재혁;이태호
    • 한국전산유체공학회지
    • /
    • 제21권1호
    • /
    • pp.19-29
    • /
    • 2016
  • A Prototype Gen-IV Sodium-cooled Fast Reactor which is one of the $4^{th}$ generation nuclear reactors is in development by Korea Atomic Energy Research Institute. The reactor is composed of four main fluid systems which are categorized by its functions, i.e., Primary Heat Transport System, Intermediate Heat Transport System, Decay Heat Removal System and Sodium-Water Reaction Pressure Relief System. The coolant of the reactor is liquid sodium and sodium-to-sodium heat exchangers are installed at the interfaces between two fluid systems, Intermediate Heat Exchangers between the Primary Heat Transport System and the Intermediate Heat Transport System and Decay Heat Exchangers between the Primary Heat Transport System and the Decay Heat Removal System. For the design and performance analysis of the Intermediate Heat Exchanger and the Decay Heat Exchanger, a computer code was written during previous step of research. In this work, the computer code named "SHXSA" has been validated preliminarily by computational fluid dynamics simulations.

Effects of ion irradiation on microstructure and properties of zirconium alloys-A review

  • Yan, Chunguang;Wang, Rongshan;Wang, Yanli;Wang, Xitao;Bai, Guanghai
    • Nuclear Engineering and Technology
    • /
    • 제47권3호
    • /
    • pp.323-331
    • /
    • 2015
  • Zirconium alloys are widely used in nuclear reactors as structural materials. During the operation, they are exposed to fast neutrons. Ion irradiation is used to simulate the damage introduced by neutron irradiation. In this article, we briefly review the neutron irradiation damage of zirconium alloys, then summarize the effect of ion irradiation on microstructural evolution, mechanical and corrosion properties, and their relationships. The microstructure components consist of dislocation loops, second phase precipitates, and gas bubbles. The microstructure parameters are also included such as domain size and microstrain determined by X-ray diffraction and the S-parameter determined by positron annihilation. Understanding the relationships of microstructure and properties is necessary for developing new advanced materials with higher irradiation tolerance.

유기물질이 인제거 특성에 미치는 영향 (Substrate Effects on Biological Excess Phosphorus Removal)

  • 전항배;이응택;신항식
    • 상하수도학회지
    • /
    • 제8권2호
    • /
    • pp.25-34
    • /
    • 1994
  • In this research, investigations were made on the effect of type and load of organic substrate on phosphorus release. Reactors of three different sizes were operated, being fed on five kinds of organic substrates. The quantitative analyses were made on phosphorus release and substrate utilization under anaerobic condition. The molar ratios of the uptaken organic substrate to the released phosphorus were 0.5 with acetate, 0.6 with glucose, 0.8 with glucose/acetate, and 1.2 with glucose/acids, respectively. The phosphorus release was inhibited at the higher organic load than the normal at stead state. Both acetate and acids/glucose enhanced phosphorus release- as well as uptake-rate, however, the complete phosphorus removal was achieved after the microbial adaptation to the new environment. In case with acetate, operation was hampered by the poor sludge settleability and phosphorus uptake was not enough although the phosphorus release was active. But with milk/starch, the phosphorus release and uptake was well developed even though phosphorus release was not comparatively high. From this study, it was concluded that organic substrates, such as glucose seemed to be converted fatty acids after fast bio-sorption, followed by concurrent uptake of these acids by excess phosphorus removing bacteria.

  • PDF

REVIEW OF SUPERCRITICAL CO2 POWER CYCLE TECHNOLOGY AND CURRENT STATUS OF RESEARCH AND DEVELOPMENT

  • AHN, YOONHAN;BAE, SEONG JUN;KIM, MINSEOK;CHO, SEONG KUK;BAIK, SEUNGJOON;LEE, JEONG IK;CHA, JAE EUN
    • Nuclear Engineering and Technology
    • /
    • 제47권6호
    • /
    • pp.647-661
    • /
    • 2015
  • The supercritical $CO_2$ (S-$CO_2$) Brayton cycle has recently been gaining a lot of attention for application to next generation nuclear reactors. The advantages of the S-$CO_2$ cycle are high efficiency in the mild turbine inlet temperature region and a small physical footprint with a simple layout, compact turbomachinery, and heat exchangers. Several heat sources including nuclear, fossil fuel, waste heat, and renewable heat sources such as solar thermal or fuel cells are potential application areas of the S-$CO_2$ cycle. In this paper, the current development progress of the S-$CO_2$ cycle is introduced. Moreover, a quick comparison of various S-$CO_2$ layouts is presented in terms of cycle performance.

Design Study for Pulsed Proton Beam Generation

  • Kim, Han-Sung;Kwon, Hyeok-Jung;Seol, Kyung-Tae;Cho, Yong-Sub
    • Nuclear Engineering and Technology
    • /
    • 제48권1호
    • /
    • pp.189-199
    • /
    • 2016
  • Fast neutrons with a broad energy spectrum, with which it is possible to evaluate nuclear data for various research fields such as medical applications and the development of fusion reactors, can be generated by irradiating proton beams on target materials such as beryllium. To generate short-pulse proton beam, we adopted a deflector and slit system. In a simple deflector with slit system, most of the proton beam is blocked by the slit, especially when the beam pulse width is short. Therefore, the available beam current is very low, which results in low neutron flux. In this study, we proposed beam modulation using a buncher cavity to increase the available beam current. The ideal field pattern for the buncher cavity is sawtooth. To make the field pattern similar to a sawtooth waveform, a multiharmonic buncher was adopted. The design process for the multiharmonic buncher includes a beam dynamics calculation and three-dimensional electromagnetic simulation. In addition to the system design for pulsed proton generation, a test bench with a microwave ion source is under preparation to test the performance of the system. The design study results concerning the pulsed proton beam generation and the test bench preparation with some preliminary test results are presented in this paper.