Browse > Article
http://dx.doi.org/10.1016/j.net.2014.12.015

Effects of ion irradiation on microstructure and properties of zirconium alloys-A review  

Yan, Chunguang (State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing)
Wang, Rongshan (Life Management Technology Center, Suzhou Nuclear Power Research Institute)
Wang, Yanli (State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing)
Wang, Xitao (State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing)
Bai, Guanghai (Life Management Technology Center, Suzhou Nuclear Power Research Institute)
Publication Information
Nuclear Engineering and Technology / v.47, no.3, 2015 , pp. 323-331 More about this Journal
Abstract
Zirconium alloys are widely used in nuclear reactors as structural materials. During the operation, they are exposed to fast neutrons. Ion irradiation is used to simulate the damage introduced by neutron irradiation. In this article, we briefly review the neutron irradiation damage of zirconium alloys, then summarize the effect of ion irradiation on microstructural evolution, mechanical and corrosion properties, and their relationships. The microstructure components consist of dislocation loops, second phase precipitates, and gas bubbles. The microstructure parameters are also included such as domain size and microstrain determined by X-ray diffraction and the S-parameter determined by positron annihilation. Understanding the relationships of microstructure and properties is necessary for developing new advanced materials with higher irradiation tolerance.
Keywords
-Dislocation loop; Corrosion properties; Ion irradiation; Mechanical properties; Second-phase precipitates; Zirconium alloys;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J.P. Mardon, D. Charquet, J. Senevat, M. Griffiths, B.D. Warr, A. Stasser, J.R. Theaker, H. Rosenbaum, B. Cheng, Influence of composition and fabrication process on out-of-pile and in-pile properties of M5 alloy, Zirconium in the Nuclear Industry: Twelfth International Symposium. STP1354 (2000) 505-524.
2 Y.H. Jeong, S.Y. Park, M.H. Lee, B.K. Choi, J.H. Beak, J.Y. Park, J.H. Kim, H.G. Kim, Out-of-pile and in-pile performance of advanced zirconium alloys (HANA) for high burn-up fuel, J. Nucl. Sci. Technol. 43 (2006) 977-983.   DOI
3 A.T. Motta, F. Lefebvre, C. Lemaignan, Amorphization of precipitates in Zircaloy under neutron and chargedparticle irradiation, Zirconium in the Nuclear Industry: Ninth International Symposium. STP1132 (1991) 718-739.
4 Y. Etoh, S. Shimada, Neutron irradiation effects on intermetallic precipitates in Zircaloy as a function of fluence, J. Nucl. Mater. 200 (1993) 59-69.   DOI
5 Y. Etoh, Microstructure and corrosion resistance of irradiated fuel cladding tubes, J. Nucl. Sci. Technol. 29 (1992) 589-597.   DOI
6 H.R. Higgy, F.H. Hammad, Effect of neutron irradiation on the tensile properties of zircaloy-2 and zircaloy-4, J. Nucl. Mater. 44 (1972) 215-227.   DOI
7 T. Onchi, H. Kayano, Y. Higashiguchi, Effect of neutron irradiation on deformation behavior of zirconium, J. Nucl. Sci. Technol. 14 (1997) 359-369.
8 V. Shishov, M. Peregud, A. Nikulina, P. Shebaldov, A. Tselischev, A. Novoselov, G. Kobylyansky, Z. Ostrovsky, V. Shamardin, Influence of zirconium alloy chemical composition on microstructure formation and irradiation induced growth, Zirconium in the Nuclear Industry: Thirteenth International Symposium, STP1423 (2002) 758-779.
9 B. Bose, R.J. Klassen, Effect of ion irradiation and indentation depth on the kinetics of deformation during microindentation of Zr-2.5%Nb pressure tube material at $25^{\circ}C$, J. Nucl. Mater. 399 (2010) 32-37.   DOI
10 D.O. Northwood, R.A. Herring, Neon ion simulation of neutron induced irradiation growth in zirconium alloys, J. Mater. Eng. 9 (1988) 329-335.   DOI
11 J.R. Parsons, C.W. Hoelke, Ion simulation of neutron irradiation growth and creep in Zr and Zr-2.5 wt% Nb at 314 K, J. Nucl. Mater. 114 (1983) 103-107.   DOI
12 X.D. Bai, S.G. Wang, J. Xu, J. Bao, H.M. Chen, Y.D. Fan, Effect of self-ion bombardment damage on high temperature oxidation behavior of Zircaloy-4, J. Nucl. Mater. 254 (1998) 266-270.   DOI
13 J. Xu, X.D. Bai, J. An, Y.D. Fan, Effect of Ar ion irradiation on electrochemical behaviors of zircaloy-4, Appl. Radiat. Isot. 53 (2000) 1005-1010.   DOI
14 J. Xu, X.D. Bai, J. An, Y.D. Fan, Comparison of electrochemical behaviors of zircaloy-4 irradiated by Ar and Zr ions, J. Mater. Sci. Lett. 19 (2000) 943-945.   DOI
15 D.Q. Peng, X.D. Bai, X.W. Chen, Q.G. Zhou, X.Y. Liu, R.H. Yu, Effect of self-ion bombardment on the corrosion behavior of zirconium, Nucl. Instrum. Methods Phys. Res. Sect. B 215 (2004) 394-402.   DOI
16 F. Onimus, J.L. Bꠑechade, Radiation Effects in Zirconium Alloys, Comprehensive Nuclear Mater, Elsevier, Oxford, 2012.
17 M. Nakatsuka, M. Nagai, Reduction of plastic anisotropy of zircaloy cladding by neutron irradiation (II), J. Nucl. Sci. Technol. 24 (1987) 906-914.   DOI
18 M. Nakatsuka, M. Nagai, Reduction of plastic anisotropy of zircaloy cladding by neutron irradiation (I), J. Nucl. Sci. Technol. 24 (1987) 832-838.   DOI
19 D. Lee, E.F. Koch, Irradiation damage in Zircaloy-2 produced by high-dose ion bombardment, J. Nucl. Mater. 50 (1974) 162-174.   DOI
20 C. Hellio, C.H. de Novion, L. Boulanger, Influence of alloying elements on the dislocation loops created by $Zr^+$ ion or by electron irradiation in a-zirconium, J. Nucl. Mater. 159 (1988) 368-378.   DOI
21 R.M. Hengstler-Eger, P. Baldo, L. Beck, J. Dorner, K. Ertl, P.B. Hoffmann, C. Hugenschmidt, M.A. Kirk, W. Petry, P. Pikart, A. Rempel, Heavy ion irradiation induced dislocation loops in AREVA's $M5^{(R)}$ alloy, J. Nucl. Mater. 423 (2012) 170-182.   DOI
22 M. Griffiths, R.W. Gilbert, The formation of c-component defects in zirconium alloys during neutron irradiation, J. Nucl. Mater. 150 (1987) 169-181.   DOI
23 H. Zou, G.M. Hood, J.A. Roy, R.H. Packwood, Irradiation effects on Fe distributions in Zircaloy-2 and Zr-2.5Nb, MRS Proc. 373 (1994) 201-206.   DOI
24 H. Zou, G.M. Hood, J.A. Roy, R.H. Packwood, Irradiationdriven solute redistribution in Zr alloys, J. Nucl. Mater. 245 (1997) 248-252.   DOI
25 P.R. Okamoto, L.E. Rehn, Radiation-induced segregation in binary and ternary alloys, J. Nucl. Mater. 83 (1997) 2-23.
26 G.S. Was, Materials degradation in fission reactors: Lessons learned of relevance to fusion reactor systems, J. Nucl. Mater. 367 (2007) 11-20.
27 J.H. Kim, M.H. Lee, B.K. Choi, Y.H. Jeong, Failure behavior of Zircaloy-4 cladding after oxidation and water quench, J. Nucl. Mater. 362 (2007) 36-45.   DOI
28 S.I. Choi, J.H. Kim, Radiation-induced dislocation and growth behavior of zirconium and zirconium alloys - a review, Nucl. Eng. Technol. 45 (2013) 385-392.   DOI
29 G.S. Was, Fundamentals of Radiation Materials Science: Metals and Alloys, Springer, Verlag Berlin Heidelberg, 2007.
30 R. Adamson, F. Garzarolli, C. Patterson, In-reactor Creep of Zirconium Alloys, Advance Nuclear Technology International, Sweden, 2009.
31 L. Tournadre, F. Onimus, J.L. Bꠑechade, D. Gilbon, J.M. Clouꠑe, J.P. Mardon, X. Feaugas, O. Toader, C. Bachelet, Experimental study of the nucleation and growth of c-component loops under charged particle irradiations of recrystallized Zircaloy- 4, J. Nucl. Mater. 425 (2012) 76-82.   DOI
32 A. Takeuchi, A. Inoue, Calculations of mixing enthalpy and mismatch entropy for ternary amorphous alloys, Mater. Trans. 41 (2000) 1372-1378.   DOI
33 Y. Idrees, Z. Yao, M. Sattari, M.A. Kirk, M.R. Daymond, "Irradiation induced microstructural changes in Zr-Excel alloy, J. Nucl. Mater. 441 (2013) 138-151.   DOI
34 S. Yamada, T. Kameyama, Observation of c-component dislocation structures formed in pure Zr and Zr-base alloy by self-ion accelerator irradiation, J. Nucl. Mater. 422 (2012) 167-172.   DOI
35 J.J. Kai, W.I. Huang, H.Y. Chou, The microstructural evolution of zircaloy-4 subjected to proton irradiation, J. Nucl. Mater. 170 (1990) 193-209.   DOI
36 A.T. Motta, D.R. Olander, Irradiation-induced Changes in Zircaloy Intermetallics, Electric Power Research Inst., Palo Alto, 1990.
37 F. Lefebvre, C. Lemaignan, Analysis with heavy ions of the amorphisation under irradiation of $Zr(Fe,Cr)_2$ precipitates in zircaloy-4, J. Nucl. Mater. 171 (1990) 223-229.   DOI
38 H.H. Shen, S.M. Peng, X. Xiang, F.N. Naab, K. Sun, X.T. Zu, Proton irradiation effects on the precipitate in a Zr-1.6Sn- 0.6Nb-0.2Fe-0.1Cr alloy, J. Nucl. Mater. 452 (2014) 335-342.   DOI
39 H.H. Shen, J.M. Zhang, S.M. Peng, X. Xiang, K. Sun, X.T. Zu, In situ TEM investigation of amorphization and recrystallization of $Zr(Fe,Cr,Nb)_2$ precipitates under Ne ion irradiation, Vacuum 110 (2014) 24-29.   DOI
40 X.M. Bai, A.F. Voter, R.G. Hoagland, M. Nastasi, B.P. Uberuaga, Efficient annealing of radiation damage near grain boundaries via interstitial emission, Science 327 (2010) 1631-1634.   DOI
41 H. Wiedersich, P. Okamoto, N.Q. Lam, A theory of radiationinduced segregation in concentrated alloys, J. Nucl. Mater. 83 (1979) 98-108.   DOI
42 Y. Etoh, S. Shimada, Irradiation-induced dissolution of precipitates in Zircaloy-2, J. Nucl. Sci. Technol. 29 (1992) 358-366.   DOI
43 M. Griffiths, A review of microstructure evolution in zirconium alloys during irradiation, J. Nucl. Mater. 159 (1988) 190-218.   DOI
44 M. Griffiths, J.F. Mecke, J.E. Winegar, Evolution of microstructure in zirconium alloys during irradiation, Zirconium in the Nuclear Industry: Eleventh International Symposium, STP1295 (1996) 580-602.
45 Y. de Carlan, D. Gilbon, M. Griffiths, D. Gibon, C. Lemaignan, Influence of iron in the nucleation of component dislocation loops in irradiated zircaloy-4, Zirconium in the Nuclear Industry: Eleventh International Symposium, STP1295 (1996) 638-653.
46 R. Holt, A. Causey, M. Griffiths, E. HO, High-fluence irradiation growth of cold-worked Zr-2.5Nb, Zirconium in the Nuclear Industry: Twelfth International Symposium, STP1354 (2000) 86-104.
47 G.P. Sabol, G.R. Kilp, M.G. Balfour, E. Roberts, Development of a cladding alloy for high burnup, Zirconium in the Nuclear Industry: Eighth International Symposium, STP1023 (1989) 227-244.
48 V.N. Shishov, M.M. Peregud, A.V. Nikulina, V.F. Kon'kov, V.V. Novikov, V.A. Markelov, T.N. Khokhunova, G.P. Kobylyansky, A.E. Novoselov, Z.E. Ostrovsky, A.V. Obukhov, Structure-phase state, corrosion and irradiation properties of Zr-Nb-Fe-Sn system alloys, Zirconium in the Nuclear Industry: 15th International Symposium, STP1505 (2008) 724-743.
49 L.M. Howe, D. Phillips, H. Zou, J. Forster, R. Siegele, J.A. Davies, A.T. Motta, J.A. Faldowski, P.R. Okamoto, Application of ion-beam-analysis techniques to the study of irradiation damage in zirconium alloys, Nucl. Instrum. Methods Phys. Res. Sec. B 118 (1996) 663-669.   DOI
50 M.L. Swanson, J.R. Parsons, C.W. Hoelke, Damaged regions in neutron-irradiated and ion-bombarded Ge and Si, Radiat. Eff. 9 (1971) 249-256.   DOI
51 T. Diaz de La Rubia, M. Guinan, New mechanism of defect production in metals: a molecular-dynamics study of interstitial-dislocation-loop formation in high-energy displacement cascades, Phys. Rev. Lett. 66 (1991) 2766-2769.   DOI
52 S.X. Wang, L.M. Wang, R.C. Ewing, Irradiation-induced amorphization: effects of temperature, ion mass, cascade size, and dose rate, Phys. Rev. B 63 (2000) 024105.   DOI
53 H.M. Naguib, R. Kelly, Criteria for bombardment-induced structural changes in non-metallic solids, Radiat. Eff. 25 (1975) 1-12.   DOI
54 S.X. Wang, L.M. Wang, R.C. Ewing, R.H. Doremus, Ion beaminduced amorphization in MgO-$Al_2O_3$-$SiO_2$. I. experimental and theoretical basis, J. Non-Cryst. Solids 238 (1998) 198-213.   DOI
55 S.X. Wang, L.M. Wang, R.C. Ewing, R.H. Doremus, Ion beaminduced amorphization in MgO-$Al_2O_3$-$SiO_2$. II. empirical model, J. Non-Cryst. Solids 238 (1998) 214-224.   DOI
56 R. Young, D. Wiles, Profile shape functions in Rietveld refinements, J. Appl. Crystallogr. 15 (1982) 430-438.   DOI
57 P. Mukherjee, P.M.G. Nambissan, P. Barat, P. Sen, S.K. Bandyopadhyay, J.K. Chakravartty, S.L. Wadekar, S. Banerjee, S.K. Chattopadhyay, S.K. Chatterjee, M.K. Mitra, The study of microstructural defects and mechanical properties in proton-irradiated Zr-1.0%Nb-1.0%Sn-0.1%Fe, J. Nucl. Mater. 297 (2001) 341-344.   DOI
58 A. Sarkar, P. Mukherjee, P. Barat, Effect of heavy ion irradiation on microstructure of zirconium alloy characterised by X-ray diffraction, J. Nucl. Mater. 372 (2008) 285-292.   DOI
59 P. Mukherjee, P. Barat, S.K. Bandyopadhyay, P. Sen, S.K. Chottopadhyay, S.K. Chatterjee, M.K. Mitra, Characterisation of microstructural parameters in oxygenirradiated Zr-1.0% Nb-1.0% Sn-0.1% Fe, J. Nucl. Mater. 305 (2002) 169-174.   DOI
60 P. Mukherjee, A. Sarkar, P. Barat, Microstructural changes in oxygen-irradiated zirconium-based alloy characterised by Xray diffraction techniques, Mater. Charact. 55 (2005) 412-417.   DOI
61 P.S. Chowdhury, P. Mukherjee, N. Gayathri, M. Bhattacharya, A. Chatterjee, P. Barat, P.M.G. Nambissan, Post irradiated microstructural characterization of Zr-1Nb alloy by X-ray diffraction technique and positron annihilation spectroscopy, Bull. Mater. Sci. 34 (2011) 507-513.   DOI
62 L. Pagano Jr., A.T. Motta, R.C. Birtcher, The formation of bubbles in Zr alloys under Kr ion irradiation, J. Nucl. Mater. 244 (1997) 295-304.   DOI
63 G. Ran, J.K. Xu, Q. Shen, J. Zhang, N. Li, L.M. Wang, In situ TEM observation of growth behavior of Kr bubbles in zirconium alloy during post-implantation annealing, Nucl. Instrum. Methods Phys. Res. Sect. B 307 (2013) 516-521.   DOI
64 B.O. Hall, Surface hardening in ion-implanted metals, J. Nucl. Mater. 116 (1983) 123-126.   DOI
65 P. Dayal, D. Bhattacharyya, W.M. Mook, E.G. Fu, Y.Q. Wang, D.G. Carr, O. Anderoglu, N.A. Mara, A. Misra, R.P. Harrison, L. Edwards, Effect of double ion implantation and irradiation by Ar and He ions on nano-indentation hardness of metallic alloys, J. Nucl. Mater. 438 (2013) 108-115.   DOI
66 D.O. Northwood, R.A. Herring, Irradiation growth of zirconium alloy nuclear reactor structural components, J. Mater. Energy Syst. 4 (1983) 195-216.   DOI
67 M.J. Fluss, P. Hosemann, J. Marian, Charged-particle Irradiation for Neutron Radiation Damage Studies, Characterization of Materials, John Wiley & Sons, Inc., Hoboken, NY, 2002.
68 M. Griffiths, R.W. Gilbert, V. Fidleris, R.P. Tucker, R.B. Adamson, Neutron damage in zirconium alloys irradiated at 644 to 710 K, J. Nucl. Mater. 150 (1987) 159-168.   DOI
69 M. Griffiths, R.W. Gilbert, G.J.C. Carpenter, Phase instability, decomposition and redistribution of intermetallic precipitates in Zircaloy-2 and-4 during neutron irradiation, J. Nucl. Mater. 150 (1987) 53-66.   DOI
70 Y. Idrees, Z. Yao, M.A. Kirk, M.R. Daymond, In situ study of defect accumulation in zirconium under heavy ion irradiation, J. Nucl. Mater. 433 (2013) 95-107.   DOI
71 F. Lefebvre, C. Lemaignan, Heavy ion-induced amorphlsation of $Zr(Fe,Cr)_2$ precipitates in Zircaloy-4, J. Nucl. Mater. 165 (1989) 122-127.   DOI
72 X.T. Zu, K. Sun, M. Atzmon, L.M. Wang, L.P. You, F.R. Wan, J.T. Busby, G.S. Was, R.B. Adamson, Effect of proton and Ne irradiation on the microstructure of Zircaloy 4, Philos. Mag. 85 (2005) 649-659.   DOI
73 J.L. Brimhall, H.E. Kissinger, L.A. Charlot, Amorphous phase formation in irradiated intermetallic compounds, Radiat. Eff. 77 (1983) 273-293.   DOI
74 J.R. Parsons, C.W. Hoelke, R.W. Gilbert, Ion simulation of neutron irradiation growth in annealed polycrystalline Zr, J. Nucl. Mater. 96 (1981) 169-177.   DOI
75 C. Zhou, X. Liu, C. Ma, B. Wang, Z. Zhang, L. Wei, Positron beam studies of argon-irradiated polycrystal ${\alpha}$-Zr, J. Appl. Phys. 97 (2005) 063511.   DOI