• Title/Summary/Keyword: Fast Fourier transform(FFT)

Search Result 572, Processing Time 0.028 seconds

Long Term Average Spectrum Characteristics of Head and Chest Register Sounds of Western Operatic Singers - Possibility of a Second Singer's Formant-

  • Jin, Sung-Min;Kwon, Young-Kyung;Song, Yun-Kyung
    • Speech Sciences
    • /
    • v.10 no.2
    • /
    • pp.99-109
    • /
    • 2003
  • The purpose of this study was to analyze and compare head register with chest register of singers acoustically. Fifteen healthy tenor major students were participated. Fifteen healthy untrained adults were chosen as the control group for this study. Long term average (LTA) power spectrum using the Fast Fourier transform (FFT) algorithm and Linear predictive coding (LPC) filter response were made with /a/ sustained in both head (G4, 392 Hz) and chest registers (C3, 131 Hz). Statistical analysis was performed using the Mann-Whitney test. In the LTA power spectrum, head register of singers increased in the level of energy gain within the frequency of 2.2-3.4 kHz (p<0.01), and 7.5-8.4 kHz (p<0.01, p<0.05). Chest register of singers increased in the frequency of 2.2-3.1 kHz (p<0.01), 7.8-8.4 kHz (p<0.05) and around 9.6 kHz (p<0.01). The LTA power spectrum revealed a peak of acoustic energy around 2,500 Hz, known as the singer's formant and another peak of acoustic energy around 8,000 Hz in the singer's voice.

  • PDF

Simulation of Seismic Ground Accelerations and Seismic Analysis of Flexible Rotor-Bearing System Housed on the Rigid Base (지반가속도의 시뮬레이션과 강기반상(剛基盤上)에 설치된 회전측-베어링계의 지진해석)

  • Kim, Ki Bong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.4
    • /
    • pp.51-61
    • /
    • 1989
  • The classical spectral analysis of random vibration is not applicable to the random vibration of nonlinear structures or the dynamic response of active mechanical systems whose governing equations contain random parametric and inhomogeneous excitations. If the random load is simulated, dynamic responses can be obtained with the application of numerical integration schemes to the governing equations of above problems. Thus, in this paper, efficient and practical methods of simulating nonstationary random seismic ground accelerations are presented by using the fast Fourier transform technique. Typical applications of the simulated ground accelerations are the simulations of the dynamic response of rotor-bearing systems under earthquake excitations. The study of accuracy is presented to determine the applicability and practicality of methods of simulation.

  • PDF

On Characterization for Stacking Fault Evaluation of CF/Epoxy Composite Laminates Using an EMAT Ultrasonics (전자기 초음파를 이용한 CF/Epoxy 복합적층판의 적층결함 특성평가)

  • Im Kwanghee;Na Seungwoo;Hsu David K.;Lee Changro;Park Jewoung;Sim Jaeki;Yang Inyoung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.254-257
    • /
    • 2004
  • An electromagnetic acoustic transducers (EMAT) can usually generate or detect an ultrasonic wave into specimens across a small gap. Especially stiffness of composites depends on layup sequence of CFRP(carbon fiber reinforced plastics) laminates because the layup of composite laminates influences there properties. It is very important to evaluate the layup errors in prepreg laminates. A nondestructive technique can therefore serve as a useful measurement for detecting layup errors. It was shown experimentally that this shear waves for detecting the presence of the errors is very sensitive. It is found that high probability shows between tests and the model developed in characterizing cured layups of the laminates. Also a C-scan method was used for detecting layup of the laminates because of extracting fiber orientation information from the ultrasonic reflection caused by structural imperfections in the laminates. Therefore, it was found that interface C-scan images show the fiber orientation information by using two-dimensional fast Fourier transform(2-D FFT).

  • PDF

The Study on Vibration Isolation of Industrial Turbo-fan (산업용 터보팬의 진동절연에 관한 연구)

  • Park, Ik-Pil;Kim, Dong-Young;Kwon, Yong-Soo;Ahn, Chan-Woo
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.609-615
    • /
    • 2001
  • A turbo-fan is easily exposed to noise and vibration as against other industrial machines and the majority of them is subject to be damaged by vibration. The most usual problem of vibration in a turbo-fan is resonance so the case of being composed of iron sheet structure with low strength like a turbo-fan should be taken seriously. In this paper, FFT(Fast Fourier Transform) and Order tracking method were used to analyze factors of vibration in a turbo-fan and hereby with proper selection of vibration isolator, we wanted to reduce vibration of base. After Order tracking, we knew resonance occurred in rotational frequency 23 Hz(1400 rpm) at the casing and the bearing. After the test of base vibration using vibration isolators, the spring isolator was more effective than the robber isolator in the base vibration and the vibration isolating is more effective in the case that the isolating pad is adhered to the bottom of the isolating spring.

  • PDF

Blood Pressure Simulation using an Arterial Pressure-volume Model

  • Yoon, Sang-Hwa;Kim, Jae-Hyung;Ye, Soo-Young;Kim, Cheol-Han;Jeon, Gye-Rok
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.1
    • /
    • pp.38-43
    • /
    • 2008
  • Using an arterial pressure-volume (APV) model, we performed an analysis of the conventional blood pressure estimation method using an oscillometric sphygmomanometer with computer simulation. Traditionally, the maximum amplitude algorithm (MAA) has been applied to the oscillation waveforms of the APV model to obtain the mean arterial pressure and the characteristic ratio. The estimation of mean arterial pressure and characteristic ratio was significantly affected by the shape of the blood pressure waveforms and the cutoff frequency of high-pass filter (HPF) circuitry. Experimental errors result from these effects when estimating blood pressure. To determine an algorithm independent of the influence of waveform shapes and parameters of HPF, the volume oscillation of the APV model and the phase shift of the oscillation with fast Fourier transform (FFT) were tested while increasing the cuff pressure from 1 mmHg to 200 mmHg (1 mmHg/s). The phase shift between ranges of volume oscillation was then only observed between the systolic and the diastolic blood pressures. The same results were obtained from simulations performed on two different arterial blood pressure waveforms and one hyperthermia waveform.

A Research about Transient Response at a Lightning Strike of Steel-Beam Building (건축물 구조체의 낙뢰 전위 분포 특성에 관한 연구)

  • Cho, D.H.;Lee, K.S.;Lee, K.G.;Ryu, C.H.
    • Proceedings of the KIEE Conference
    • /
    • 2004.11d
    • /
    • pp.122-126
    • /
    • 2004
  • 직격뇌가 높은 건축물에 치거나 인접 건물로부터 뇌전류가 유입되었을 때 잘못된 피뢰설비로 인한 피해는 매우 심각한 실정이다. 낙뢰가 치는 순간에 반도체와 같은 민감한 전자부품을 사용하는 전자 및 통신기기는 뇌전류로 인한 전자기장의 영향으로 오동작이 발생하거나 부품의 손상을 입기가 쉽다. 본 논문에서는 건축물 구조체에 직격뇌가 유입되었을 때 건축물 구조체 및 건물 주위에 나타나는 전위분포특성을 연구하였다. 본 논문에서 30m 높이 건축물의 상부 모서리와 중앙부 그리고 건축물 하부 모서리와 중앙부로 뇌전류가 유입된다고 가정하여 건축물의 전계분포특성을 시뮬레이션하였으며, 뇌전류는 2중 지수함수형태로 모의된 20kA 임펄스 서지 전류를 주입하였다. 뇌서지 전류의 주파수 특성은 Fast Fourier Transform(FFT)을 이용하여 얻었으며, 얻어진 주파수 값을 이용하여 건축물 구조체와 인접지역의 Scalar Potentials과 Electric Fields의 특성을 시뮬레이션하였다. 또한 철골 빔 건축물의 철골 빔에 직접 뇌전류가 유입되는 경우와 건물 하부의 접지전극에 뇌전류가 유입되는 경우로 분리 하여 연구하였다. 그 결과 뇌전류의 유입경로가 건축물의 모서리부분 보다는 중심부에 위치될 때 전위 및 전계 크기가 작았으며 건축 철골구조물보다 건축물 하부에 접지전극이 설치될 때 더 낮은 전계 값을 갖는 것을 확인하였다.

  • PDF

Tracking Detection using Information Granulation-based Fuzzy Radial Basis Function Neural Networks (정보입자기반 퍼지 RBF 뉴럴 네트워크를 이용한 트랙킹 검출)

  • Choi, Jeoung-Nae;Kim, Young-Il;Oh, Sung-Kwun;Kim, Jeong-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2520-2528
    • /
    • 2009
  • In this paper, we proposed tracking detection methodology using information granulation-based fuzzy radial basis function neural networks (IG-FRBFNN). According to IEC 60112, tracking device is manufactured and utilized for experiment. We consider 12 features that can be used to decide whether tracking phenomenon happened or not. These features are considered by signal processing methods such as filtering, Fast Fourier Transform(FFT) and Wavelet. Such some effective features are used as the inputs of the IG-FRBFNN, the tracking phenomenon is confirmed by using the IG-FRBFNN. The learning of the premise and the consequent part of rules in the IG-FRBFNN is carried out by Fuzzy C-Means (FCM) clustering algorithm and weighted least squares method (WLSE), respectively. Also, Hierarchical Fair Competition-based Parallel Genetic Algorithm (HFC-PGA) is exploited to optimize the IG-FRBFNN. Effective features to be selected and the number of fuzzy rules, the order of polynomial of fuzzy rules, the fuzzification coefficient used in FCM are optimized by the HFC-PGA. Tracking inference engine is implemented by using the LabVIEW and loaded into embedded system. We show the superb performance and feasibility of the tracking detection system through some experiments.

Large Eddy Simulation for a 2-D hydrofoil using VIC(Vortex-In-Cell) method (VIC 방법을 사용한 2차원 날개의 LES 해석)

  • Kim, M.S.;Kim, Y.C.;Suh, J.C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.407-413
    • /
    • 2011
  • VIC (Vortex-In-Cell) method for viscous incompressible flow is presented to simulate the wake behind a modified NACA16 foil. With uniform rectangular grid, the velocity in field is calculated using streamfunction from vorticity field by solving the Poisson equation in which FFT(Fast Fourier Transform) is combined with 2nd order finite difference scheme. Here, LES(Large Eddy Simulation) with Smagorinsky model is applied for turbulence calculation. Effective viscosity is formulated using magnitude of strain tensor(or vorticity). Then the turbulent diffusion as well as viscous diffusion becomes particle strength exchange(PSE) with averaged eddy viscosity. The well-established panel method is combined to obtain the irrotational velocity and to apply the no-penetration boundary condition on the body panel. And wall diffusion is used for no-slip condition numerical results of turbulent stresses are compared with experimental results (Bourgoyne, 2003). Before comparing process, LES(Large Eddy Simulation) SGS(Subgrid scale) stress is transformed Reynolds averaged stress (Winckelmans, 2001).

  • PDF

An Iterative Technique for Real-Time Tracking of Power System Harmonics

  • Sidhu, T.S.;Zadeh, M.R.D.;Pooranalingam, P.J.;Oh, Yong-Taek
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.3
    • /
    • pp.319-327
    • /
    • 2011
  • An iterative technique based on orthogonal filters and frequency tracking is proposed to estimate harmonic components in power systems. The technique uses frequency interpolation to estimate fundamental frequency and harmonics when the nominal frequency of the signal is a non-integer value. Due to the number of computations involved during the generation of filter coefficients, an offline computation is suggested. Beneficial features of the proposed technique include fixed sampling rate and fixed data window size. The performance of the proposed technique is examined by simulating different power system operating conditions and evaluating the data from these simulations. A technique based on Fast Fourier Transform is also used to estimate the harmonic components for all the simulated signals. These estimates are compared with those obtained from the proposed technique. Results show that the proposed technique can converge to the accurate fundamental frequency and therefore, provide accurate harmonic components even when the fundamental frequency is not equal to the nominal frequency.

Detecting of Scuffing Failure Using Acoustic Emission (AE 센서를 이용한 스커핑 손상의 감시)

  • Cho, Yong-Joo;Kim, Jae-Hwan;Kim, Tae-Wan;Cho, Yong-Joo
    • Tribology and Lubricants
    • /
    • v.18 no.5
    • /
    • pp.351-356
    • /
    • 2002
  • The surfaces of machine components in sliding contact such as bearing, gears and pistons etc. frequently operate under the condition of mixed lubrication due to high load, high speed and slip. These machine components often undergo the inception of scuffing in practical application. The scuffing failure is a critical problem in modern machine components, especially for the requirement of high efficiency and small size. However, it is difficult to find a universal mechanism to explain all scuffing phenomena because there are so many factors affecting the onset of scuffing. In this study, scuffing experiments are conducted using Acoustic Emission(AE) measurement by an indirect sensing approach to detect scuffing failure. Acoustic Emission(AE) signal has been widely utilized to monitor the interaction at the friction interface. Using AE signals we can get an indication about the state of the friction processes, about the quality of solid and liquid layers on the contacting surfaces in real time. The FFT(Fast Fourier Transform) analyses of the AE signal are sued to understand the interfacial interaction and the relationship between the AE signal and the state of contact is presented.