• 제목/요약/키워드: Fas signaling

검색결과 56건 처리시간 0.027초

AMPK/Sirt1/PGC-1α 신호 전달 경로의 조절을 통한 오미자 추출물의 비만 개선 효과 (Anti-Obesity Effect of Schizandrae Fructus Water Extract through Regulation of AMPK/Sirt1/PGC-1α signaling pathway)

  • 이세희;박해진;신미래;노성수
    • 대한본초학회지
    • /
    • 제37권2호
    • /
    • pp.1-11
    • /
    • 2022
  • Objectives : Although the anti-obesity effect of Schizandrae Fructus water extract has been demonstrated, its underlying mechanism is still unclear. Therefore, we aimed to evaluate the anti-obesity effect of Schizandrae Fructus water extract through the p-AMP-activated protein kinase (p-AMPK), sirtuin1 (Sirt1), and peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α) signaling in 60% high-fat diet (HFD)-induced obese mouse model. Methods : Male C57BL/6 mice were divided into four groups. The Normal group was fed a normal diet and the obese groups were fed 60% HFD. Except for the Control group, the GG group was supplemented with 0.5% Garcinia gummigutta and the SCW group was supplemented with 0.5% Schizandrae Fructus water extract. After 6 weeks, obesity-related biomarkers in serum were measured and the expressions of protein for lipid-related factors in liver tissue were analyzed by western blot. Results : Treatment with SCW significantly down-regulated body weight compared to the Control group. SCW down-regulated levels of triglyceride and total cholesterol in serum and significantly increased p-AMPK, Sirt1, and PGC-1α in liver tissue. In addition, the expressions of fatty acid oxidation-related proteins such as peroxisome proliferator-activated receptor α (PPARα), carnitine palmitoyltransferase 1A (CPT-1A), uncoupling protein 1 (UCP1), and uncoupling protein 3 (UCP3) were significantly up-regulated. However, fatty acid synthesis-related proteins including sterol regulatory element-binding protein-1 (SREBP-1), phospho-Acetyl-CoA Carboxylase (p-ACC), and fatty acid synthase (FAS) were significantly down-regulated. Conclusions : Taken together, SCW treatment showed anti-obesity effect by regulating both fatty acid oxidation-related and fatty acid synthesis-related proteins through AMPK/Sirt1/PGC-1α signaling in 60% HFD-induced obese mice.

Apoptosis의 외인성 경로에서 caspase-8의 구조적 및 기능적 역할 (Structural and Functional Roles of Caspase-8 in Extrinsic Apoptosis)

  • 하민선;정미숙;장세복
    • 생명과학회지
    • /
    • 제31권10호
    • /
    • pp.954-959
    • /
    • 2021
  • 세포 사멸은 항상성을 유지하기 위해 세포군을 조절하는 중요한 메커니즘이며 시스테인 단백질분해효소 중 하나인 카스파제는 세포 사멸 경로의 중요한 중재자이다. Caspase-8은 세포외 자극에 의해 시작되는 외인성 세포자멸 경로의 개시자 카스파제이다. Caspase-8에는 보존된 도메인인 N-말단의 두개의 죽음 이펙터 도메인(DED)과 C-말단의 2개의 촉매 도메인을 가지며, 이는 이러한 외인성 세포자멸 경로에 중요하게 작용한다. 외인성 세포멸사 경로에서, TNF 슈퍼패밀리인 죽음 수용체는 세포 외부로부터의 죽음 수용체 특이적 리간드의 결합에 의해 활성화된다. 활성화된 죽음 수용체가 어댑터 단백질인 Fas-associated death domain 단백질(FADD)을 모집한 후, 죽음 수용체와 FADD의 죽음 도메인(DD)이 서로 결합하고 죽음 수용체와 결합한 FADD가 caspase-8의 전구체 형태인 procaspase-8을 모집한다. FADD와 procaspase-8의 죽음 이펙터 도메인은 서로 결합하고 FADD에 결합된 procaspase-8은 prodomain의 절단에 의해 활성화된다. 이 죽음 수용체-FADD-caspase-8 복합체는 세포사멸 유도 신호복합체(DISC)라고 한다. 세포 FLICE 억제 단백질(c-FLIPs)은 세포사멸을 억제하는 역할과 촉진하는 역할을 모두 수행하여 caspase-8의 활성화를 조절하고 caspase-8 활성화는 caspase-3와 같은 작동자 카스파제를 활성화를 시킨다. 마지막으로 활성화된 작동자 카스파제는 DNA 분해, 핵 응축, 세포막 수포 및 카스파제 기질의 단백질 분해에 작용하여 세포사멸을 완료한다.

유리지방산으로 지방축적을 유도한 HepG2 cells 대한 꾸지뽕 열매 추출물의 개선 효과 (Cudrania tricuspidata Fruit Extract Ameliorates Free Fatty Acid-induced Lipid Accumulation in HepG2 Cells)

  • 이효정;박세은;김승
    • 생명과학회지
    • /
    • 제29권10호
    • /
    • pp.1144-1151
    • /
    • 2019
  • 비알코올성 지방간은 만성 간 질환으로 비만, 고혈압, 비만, 이상지질혈증과 같은 다양한 대사증후군과 연관되어 있다. 꾸지뽕은 한국을 포함한 동아시아 국가에서 다양한 질병에 사용되는 약용작물로 본 연구에서는 유리지방산에 의해 지방축적이 유도된 세포 내에서 꾸지뽕 열매 추출물의 비알코올성 지방간 개선 효과와 기전을 규명하였다. 꾸지뽕 열매 추출물은 지방 축적 및 중성지방, 콜레스테롤 생성 및 HMG 환원효소의 활성을 억제하였다. 또한 지방생성과 관련된 유전자인 SREBP-1, FAS, SCD-1, SREBP-2의 발현을 억제 하였으며 AMPK의 활성화를 억제하였다. 본 연구결과를 통해서 꾸지뽕 열매 추출물이 유리지방산에 의해 유도된 지방 축적을 억제하고 AMPK/SREBP 신호전달 경로를 조절하여 억제 활성을 나타냄을 밝히며, 비알코올성 지방간의 예방 및 개선을 위한 천연물 소재로 활용될 수 있을 것으로 사료된다.

Effects of lycopene on abdominal fat deposition, serum lipids levels and hepatic lipid metabolism-related enzymes in broiler chickens

  • Wan, Xiaoli;Yang, Zhengfeng;Ji, Haoran;Li, Ning;Yang, Zhi;Xu, Lei;Yang, Haiming;Wang, Zhiyue
    • Animal Bioscience
    • /
    • 제34권3_spc호
    • /
    • pp.385-392
    • /
    • 2021
  • Objective: The present study was conducted to investigate the effects of lycopene on growth performance, abdominal fat deposition, serum lipids levels, activities of hepatic lipid metabolism related enzymes and genes expression in broiler chickens. Methods: A total of 256 healthy one-day-old male Arbor Acres broiler chicks were randomly divided into four groups with eight replicates of eight birds each. Birds were fed basal diet supplemented with 0 (control), 100, 200, and 400 mg/kg lycopene, respectively. Results: Dietary 100 mg/kg lycopene increased the body weight at 21 day of age compared to the control group (p<0.05). Compared to the basal diet, broilers fed diet with 100 mg/kg lycopene had decreased abdominal fat weight, and broilers fed diet with 100 and 200 mg/kg lycopene had decreased abdominal fat percentage (p<0.05). Compared to control, diets with 100, 200, and 400 mg/kg lycopene reduced the levels of total triglyceride and total cholesterol in serum, and diets with 100 and 200 mg/kg lycopene reduced the level of serum low density lipoprotein cholesterol (p<0.05). The activity of fatty acid synthase (FAS) in 400 mg/kg lycopene treated broilers and the activity of acetyl-CoA carboxylase (ACC) in 100, 200, and 400 mg/kg lycopene treated broilers were lower than those fed basal diet (p<0.05). Lycopene increased the mRNA abundance of adenosine monophosphate activated protein kinase α (AMPK-α), whereas decreased the mRNA abundance of sterol regulatory element-binding protein 1, FAS, and ACC compared to the control group (p<0.05). Conclusion: Dietary lycopene supplementation can alleviate abdominal fat deposition and decrease serum lipids levels, possibly through activating the AMPK signaling pathway, thereby regulating lipid metabolism such as lipogenesis. Therefore, lycopene or lycopene-rich plant materials might be added to poultry feed to regulate lipid metabolism.

RNA-Seq explores the functional role of the fibroblast growth factor 10 gene in bovine adipocytes differentiation

  • Nurgulsim Kaster;Rajwali Khan;Ijaz Ahmad;Kazhgaliyev Nurlybay Zhigerbayevich;Imbay Seisembay;Akhmetbekov Nurbolat;Shaikenova Kymbat Hamitovna;Omarova Karlygash Mirambekovna;Makhanbetova Aizhan Bekbolatovna;Tlegen Garipovich Amangaliyev;Ateikhan Bolatbek;Titanov Zhanat Yeginbaevich;Shakoor Ahmad;Zan Linsen;Begenova Ainagul Baibolsynovna
    • Animal Bioscience
    • /
    • 제37권5호
    • /
    • pp.929-943
    • /
    • 2024
  • Objective: The present study was executed to explore the molecular mechanism of fibroblast growth factor 10 (FGF10) gene in bovine adipogenesis. Methods: The bovine FGF10 gene was overexpressed through Ad-FGF10 or inhibited through siFGF10 and their negative control (NC) in bovine adipocytes, and the multiplicity of infection, transfection efficiency, interference efficiency were evaluated through quantitative real-time polymerase chain reaction, western blotting and fluorescence microscopy. The lipid droplets, triglycerides (TG) content and the expression levels of adipogenic marker genes were measured during preadipocytes differentiation. The differentially expressed genes were explored through deep RNA sequencing. Results: The highest mRNA level was found in omasum, subcutaneous fat, and intramuscular fat. Moreover, the highest mRNA level was found in adipocytes at day 4 of differentiation. The results of red-oil o staining showed that overexpression (Ad-FGF10) of the FGF10 gene significantly (p<0.05) reduced the lipid droplets and TG content, and their down-regulation (siFGF10) increased the measurement of lipid droplets and TG in differentiated bovine adipocytes. Furthermore, the overexpression of the FGF10 gene down regulated the mRNA levels of adipogenic marker genes such as CCAAT enhancer binding protein alpha (C/EBPα), fatty acid binding protein (FABP4), peroxisome proliferator-activated receptor-γ (PPARγ), lipoprotein lipase (LPL), and Fas cell surface death receptor (FAS), similarly, down-regulation of the FGF10 gene enriched the mRNA levels of C/EBPα, PPARγ, FABP4, and LPL genes (p<0.01). Additionally, the protein levels of PPARγ and FABP4 were reduced (p<0.05) in adipocytes infected with Ad-FGF10 gene and enriched in adipocytes transfected with siFGF10. Moreover, a total of 1,774 differentially expressed genes (DEGs) including 157 up regulated and 1,617 down regulated genes were explored in adipocytes infected with Ad-FGF10 or Ad-NC through deep RNA-sequencing. The top Kyoto encyclopedia of genes and genomes pathways regulated through DEGs were the PPAR signaling pathway, cell cycle, base excision repair, DNA replication, apoptosis, and regulation of lipolysis in adipocytes. Conclusion: Therefore, we can conclude that the FGF10 gene is a negative regulator of bovine adipogenesis and could be used as a candidate gene in marker-assisted selection.

강황 추출물의 비알코올성 지방간 질환 개선 효과 (Improvement Effect of Non-alcoholic Fatty Liver Disease by Curcuma longa L. Extract)

  • 이영섭;이대영;권동렬;강옥화
    • 한국약용작물학회지
    • /
    • 제28권4호
    • /
    • pp.276-286
    • /
    • 2020
  • Background: Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease associated with multiple metabolic disorders. The medicinal plant Curcuma longa L. is widely distributed in Asia and has been used to treat a spectrum diseases in clinical practice. To date, there are inadequate reports of the effects of C. longa 50% EtOH extract (CE) on NAFLD. Therefore, in this study, we evaluate the CE on an NAFLD animal and elucidate the mechanism of action. Methods and Results: C57BL/6J mice fed a methionine-choline deficient diet (MCD) were treated with CE or milk thistle, and changes in inflammation and stetosis were assessed. Experimental animals were divided into six group (n = 10); Normal, MCD, MCD + CE 50 mg/kg/day (CE 50), MCD + CE 100 mg/kg/day (CE 100), MCD + CE 150 mg/kg/day (CE 150), and the Control, MCD + Milk thistle 150 mg/kg/day (MT 150). Body weight, liver weight, liver function, and histological changes were assessed in experimental animals. Quantitative real-time polymerase chain reaction and western blot analyses were performed on samples collected after 4 weeks of treatment. We observed that CE administration improved MCD-diet-induced lipid accumulation, and triglyceride (TG) and total cholesterol (TC) levels in serum. Treatment with CE also decreased hepatic lipogenesis through modulation of the sterol regulatory element binding protein-1 (SREBP-1), CCAAT-enhancer binding protein α (C/EBPα), fatty acid synthase (FAS), and peroxisome proliferator-activated receptor γ (PPARγ) expresion. In addition, the use of CE increased adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and inhibited the up-regulation of toll-like receptor (TLR)-2 and TLR-4 signaling and the production of inflammatory mediators. Conclusions: In this report, we observed that CE regulated lipid accumulation in an MCD dietinduced NAFLD model by decreasing lipogenesis. These data suggeste that CE could effectively protect mice against MCD-induced NAFLD, by inhibiting the TLR-2 and TLR-4 signaling cascades.

상엽(桑葉) 추출물의 Adipogenesis 억제를 통한 항비만 활성 평가 (Anti-adipogenic Effect of Mori Follium Extract in 3T3-L1 Cells)

  • 권오준
    • 대한본초학회지
    • /
    • 제31권5호
    • /
    • pp.47-53
    • /
    • 2016
  • Objectives : Mori Follium (Morus alba L. leaf) has been cultivated in many Asian countries. Especially, mulberry leaf has been used as an anti-diabetic remedy in oriental medicine. However, anti-obesity effect of mulberry has not been unknown. In this study, our objectives of study is to investigate the anti-adipogenic effect of mulberry water extract (MLE) and to reveal potential molecular anti-obesity mechanism in 3T3-L1 adipocytes differentiation model.Methods : The cytotoxicity of MLE in 3T3-L1 was examined by MTT assay. Anti-adipogenic effect of MLE was evaluated by Oil Red O (ORO) staining. To elucidate the molecular mechanism, inhibitor assay was employed. The mRNA expression levels of adipogenic transcriptional factors such as PPARγ and fatty acid synthase (FAS) were analyzed by reverse transcription-polymer chain reaction (RT-PCR) analysis.Results : The MLE treatment for 24 h did not affect to the 3T3-L1 cells at concentrations of 1, 10, 100, 200, 400, 800 and 1,000 ㎍/㎖. Thus, non-toxic concentration rages of MLE were used during adipogenesis period (day -2 to 7). Intracellular lipid accumulation in MLE-treated 3T3-L1 adipocytes (day 6) were quantitatively evaluated by ORO staining. The MLE treatment significantly and dose-dependently suppressed 3T3-L1 adipogenesis by 60.42%, 38.24%, and 5.97% at 10, 100, and 200 ㎍/㎖, respectively. In addition, our inhibitor assay and RT-PCR analysis revealed that the MLE-inhibited 3T3-L1 adipogenesis through inhibition of PPARγ mediated by Wnt/β-catenin signaling pathway.Conclusions : In conclusion, these findings indicate that the MLE could be used in prevent and/or treatment of obesity-related diseases.

Protective Effects of EGCG on UVB-Induced Damage in Living Skin Equivalents

  • Kim, So-Young;Kim, Dong-Seok;Kwon, Sun-Bang;Park, Eun-Sang;Huh, Chang-Hun;Youn, Sang-Woong;Kim, Suk-Wha;Park, Kyoung-Chan
    • Archives of Pharmacal Research
    • /
    • 제28권7호
    • /
    • pp.784-790
    • /
    • 2005
  • In this study, we evaluate the effects of (-)-epigallocatechin-3-gallate (EGCG) on ultraviolet B(UVB)-irradiated living skin equivalents (LSEs). Histologically, UVB irradiation induced thinning of the LSE epidermis, whereas EGCG treatment led to thickening of the epidermis. Moreover, EGCG treatment protected LSEs against damage and breakdown caused by UVB exposure. Immunohistochemically, UVB-exposed LSEs expressed p53, Fas, and 8-hydroxy-deoxyguanosine (8-OHdG), all of which are associated with apoptosis. However, EGCG treatment reduced the levels of UVB-induced apoptotic markers in the LSEs. In order to determine the signaling pathways induced by UVB, Western blot analysis was performed for both c-Jun $NH_2$-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK), which are associated with UVB-induced oxidative stress. UVB activated JNK in the epidermis and dermis of the LSEs, and EGCG treatment reduced the UVB-induced phosphorylation of JNK. In addition, p38 MAPK was also found to have increased in the UVB-exposed LSEs. Also, EGCG reduced levels of the phosphorylation of UVB-induced p38 MAPK. In conclusion, pretreatment with EGCG protects against UVB irradiation via the suppression of JNK and p38 MAPK activation. Our results suggest that EGCG may be useful in the prevention of UVB-induced human skin damage, and LSEs may constitute a potential substitute for animal and human studies.

Oral administration of Jinan Red Ginseng and licorice extract mixtures ameliorates nonalcoholic steatohepatitis by modulating lipogenesis

  • Yang, Daram;Jeong, Hyuneui;Hwang, Seung-Mi;Kim, Jong-Won;Moon, Hee-Won;Lee, Ye-Eun;Oh, Hyo-Bin;Park, Chung-berm;Kim, Bumseok
    • Journal of Ginseng Research
    • /
    • 제46권1호
    • /
    • pp.126-137
    • /
    • 2022
  • Background: Nonalcoholic steatohepatitis (NASH) is one of the main chronic liver diseases. NASH is identified by lipid accumulation, inflammation, and fibrosis. Jinan Red Ginseng (JRG) and licorice have been widely used because of their anti-inflammatory and hepatoprotective effects. Hence, this study assessed JRG and licorice extract mixtures' effects on NASH progression. Methods: Palmitic acid (PA) and the western diet (WD) plus, high glucose-fructose water were used to induce in vitro and in vivo NASH. Mice were orally administered with JRG-single (JRG-S) and JRG-mixtures (JRG-M; JRG-S + licorice) at 0, 50, 100, 200 or 400 mg/kg/day once a day during the last half-period of diet feeding. Results: JRG-S and JRG-M reduced NASH-related pathologies in WD-fed mice. JRG-S and JRG-M consistently decreased the mRNA level of genes related with inflammation, fibrosis, and lipid metabolism. The treatment of JRG-S and JRG-M also diminished the SREBP-1c protein levels and the p-AMPK/AMPK ratio. The FAS protein levels were decreased by JRG-M treatment both in vivo and in vitro but not JRG-S. Conclusion: JRG-M effectively reduced lipogenesis by modulating AMPK downstream signaling. Our findings suggest that this mixture can be used as a prophylactic or therapeutic alternative for the remedy of NASH.

Protective effect of Capsosiphon fulvescens on oxidative stress-stimulated neurodegenerative dysfunction of PC12 cells and zebrafish larva models

  • Laxmi Sen Thakuri;Jung Eun Kim;Jin Yeong Choi;Dong Young Rhyu
    • Fisheries and Aquatic Sciences
    • /
    • 제26권1호
    • /
    • pp.24-34
    • /
    • 2023
  • Reactive oxygen species (ROS) at high concentrations induce oxidative stress, an imbalanced redox state that is a prevalent cause of neurodegenerative disorders. This study aimed to investigate the protective effect of Capsosiphon fulvescens (CF) extract on oxidative stress-induced impairment of cognitive function in models of neurodegenerative diseases. CF was extracted with subcritical water and several solvents and H2O2 (0.25 mM) or aluminum chloride (AlCl3; 25 µM) as an inducer of ROS was treated in PC12 neuronal cells and zebrafish larvae. All statistical analyses were performed using one-way analysis of variance and Dunnett's test using GraphPad Prism. H2O2 and AlCl3 were found to significantly induce ROS production in PC12 neuronal cells and zebrafish larvae. In addition, they strongly affected intracellular Ca2+ levels, antioxidant enzyme activity, brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) signaling, acetylcholinesterase (AChE) activity, and hallmarks of Alzheimer's disease. However, treatment of H2O2-induced PC12 cells or AlCl3-induced zebrafish larvae with CF subcritical water extract at 90℃ and CF water extract effectively regulated excessive ROS production, intracellular Ca2+ levels, and mRNA expression of superoxide dismutase, glutathione peroxide, glycogen synthase kinase-3 beta, β-amyloid, tau, AChE, BDNF, and TrkB. Our study suggested that CF extracts can be a potential source of nutraceuticals that can improve the impairment of cognitive function and synaptic plasticity by regulating ROS generation in neurodegenerative diseases.