• Title/Summary/Keyword: Fas and Fas-L

Search Result 426, Processing Time 0.029 seconds

Dietary supplementation of piperine improves innate immunity, growth performance, feed utilization and intestinal morphology of red seabream (Pagrus major)

  • Mirasha Hasanthi;G.H.T. Malintha;Kwan-Sik Yun;Kyeong-Jun Lee
    • Fisheries and Aquatic Sciences
    • /
    • 제26권12호
    • /
    • pp.726-737
    • /
    • 2023
  • Piperine, the main bioactive component of black pepper (Piper nigrum Linn.), has anti-inflammatory, antifungal, and antibacterial properties. This study evaluated the supplemental effects of piperine or black pepper on innate immunity, growth, feed utilization efficiency, and intestinal morphology in red seabream (Pagrus major). Six experimental diets were formulated, supplementing piperine at 0.0, 0.25, 0.5, 1.0, and 2.0 g/kg levels (Con, P25, P50, P100, and P200) or 1.0 g/kg black pepper (BP100). Juvenile fish (7.6 ± 0.1 g) were randomly stocked into 18 circular tanks (220 L), including 30 fish per tank. Each diet was randomly assigned to triplicate groups, and the feeding trial was conducted for 8 weeks. The results showed that final body weight, specific growth rate, weight gain, and feed utilization efficiency were significantly improved (p < 0.05) when piperine was supplemented into diets at 0.25-2.0 g/kg levels compared to the Con group. Compared to the Con diet, condition factor was significantly increased (p < 0.05) in fish fed with dietary piperine at 0.25-2.0 g/kg or BP100 diet. Serum myeloperoxidase activity was increased (p < 0.05) in P25 and P100 groups and antiprotease activity was increased (p < 0.05) in P100 group compared to the Con group. Significantly higher (p < 0.05) lysozyme activity was observed in P50, P100, P200 and BP100 groups, while total immunoglobulin level was increased in P50, P100 and BP100 groups than Con group. Superoxide dismutase activity was increased (p < 0.05) by dietary piperine at 0.25-2.0 g/kg levels and BP100 diet compared to Con diet. Plasma cholesterol was significantly lower (p < 0.05) in fish fed with piperine (0.5-2.0 g/kg) or BP100 compared to the Con diet. Compared to the Con diet significantly longer (p < 0.05) intestinal villi were observed in fish fed with piperine at 0.25-1.0 g/kg levels, and higher goblet cell count was observed in P25 and BP100 groups. Dietary inclusion of piperine would be a potent immunostimulant in fish diet and the optimum supplementation level would be 0.25-1.0 g/kg.

Rapamycin Rescues the Poor Developmental Capacity of Aged Porcine Oocytes

  • Lee, Seung Eun;Kim, Eun Young;Choi, Hyun Yong;Moon, Jeremiah Jiman;Park, Min Jee;Lee, Jun Beom;Jeong, Chang Jin;Park, Se Pill
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제27권5호
    • /
    • pp.635-647
    • /
    • 2014
  • Unfertilized oocytes age inevitably after ovulation, which limits their fertilizable life span and embryonic development. Rapamycin affects mammalian target of rapamycin (mTOR) expression and cytoskeleton reorganization during oocyte meiotic maturation. The goal of this study was to examine the effects of rapamycin treatment on aged porcine oocytes and their in vitro development. Rapamycin treatment of aged oocytes for 24 h (68 h in vitro maturation [IVM]; $44h+10{\mu}M$ rapamycin/24 h, $47.52{\pm}5.68$) or control oocytes (44 h IVM; $42.14{\pm}4.40$) significantly increased the development rate and total cell number compared with untreated aged oocytes (68 h IVM, $22.04{\pm}5.68$) (p<0.05). Rapamycin treatment of aged IVM oocytes for 24 h also rescued aberrant spindle organization and chromosomal misalignment, blocked the decrease in the level of phosphorylated-p44/42 mitogen-activated protein kinase (MAPK), and increased the mRNA expression of cytoplasmic maturation factor genes (MOS, BMP15, GDF9, and CCNB1) compared with untreated, 24 h-aged IVM oocytes (p<0.05). Furthermore, rapamycin treatment of aged oocytes decreased reactive oxygen species (ROS) activity and DNA fragmentation (p<0.05), and downregulated the mRNA expression of mTOR compared with control or untreated aged oocytes. By contrast, rapamycin treatment of aged oocytes increased mitochondrial localization (p<0.05) and upregulated the mRNA expression of autophagy (BECN1, ATG7, MAP1LC3B, ATG12, GABARAP, and GABARAPL1), anti-apoptosis (BCL2L1 and BIRC5; p<0.05), and development (NANOG and SOX2; p<0.05) genes, but it did not affect the mRNA expression of pro-apoptosis genes (FAS and CASP3) compared with the control. This study demonstrates that rapamycin treatment can rescue the poor developmental capacity of aged porcine oocytes.

The responsibility of C-terminal domain in the thermolabile haemolysin activity of Vibrio parahaemolyticus and inhibition treatments by Phellinus sp. extracts

  • Tran Thi Huyen;Ha Phuong Trang;Nguyen Thi-Ngan;Bui Dinh-Thanh;Le Pham Tan Quoc;Trinh Ngoc Nam
    • Fisheries and Aquatic Sciences
    • /
    • 제26권3호
    • /
    • pp.204-215
    • /
    • 2023
  • The thermolabile haemolysin (tlh) of Vibrio parahaemolyticus (Vptlh) from V. parahaemolyticus is a multiple-function enzyme, initially describes as a haemolytic factor activated by lecithin and phospholipase A2 enzymatic activity (Shinoda, 1991; Vazquez-Morado, 2021; Yanagase et al., 1970). Until now, the tlh structure has hypothesized including N-terminal and C-terminal domain, but what domain of the Vptlh structure does the haemolytic activity has not been refined yet. In this study, a 450-bp VpTLH nucleotide sequence of the entire Vptlh gene encoded the C-terminal domain cloned firstly to examine its responsibility in the activity of the Vptlh. The C-terminal domain fused with a 6-His-tag named the His-tag-VpC-terminal domain was expressed successfully in soluble form in the BL21 (DE3) PlysS cell. Remarkably, both expression and purification results confirmed a high agreement in the molecular weight of the His-tag-VpC-terminal domain was 47 kDa. This work showed the His-tag-VpC-terminal domain lysed the erythrocyte membranes in the blood agar and the phosphate buffered saline (0.9%) media without adding the lecithin substrate of the phospholipase enzyme. Haemolysis occurred at all tested diluted concentrations of His-tag-VpC-terminal domain (p < 0.05), providing evidence for the independent haemolytic activity of the His-tag-VpC-terminal domain. The content of 100 ㎍ of the His-tag-VpC-terminal domain brought the highest haemolytic activity of 80% compared to that in the three remaining contents. Significantly, the His-tag-VpC-terminal domain demonstrated not to involve the phospholipase activity in Luria-Bertani agar supplemented with 1% (vol/vol) egg yolk emulsion. All results proved the vital responsibility of the His-tag-VpC-terminal domain in causing the haemolytic activity without the required activation by the phospholipase enzyme. Raw extracts of Phellinus igniarus and Phellinus pipi at 10-1 mg/mL inhibited the haemolytic activity of the His-tag-VpC-terminal domain from 67.7% to 87.42%, respectively. Hence applying the His-tag-VpC-terminal domain as a simple biological material to evaluate quickly potential derivatives against the Vptlh in vivo conditions will accessible and more advantageous than using the whole of the Vptlh.

Esculetin의 caspase-3 활성을 통한 U937 인체 혈구암세포의 세포사멸 유도 (Esculetin Induces Apoptosis through Caspase-3 Activation in Human Leukemia U937 Cells)

  • 박철;현숙경;신우진;정경태;최병태;권현주;황혜진;김병우;박동일;이원호;최영현
    • 생명과학회지
    • /
    • 제19권2호
    • /
    • pp.249-255
    • /
    • 2009
  • Esculetin, a coumarin compound, has been known to inhibit proliferation and induce apoptosis in several types of human cancer cells. However, the molecular mechanisms involved in esculetin-induced apoptosis are still uncharacterized in human leukemia cells. In this study, we have investigated whether esculetin exerts anti-proliferative and apoptotic effects on human leukemia U937 cells. It was found that esculetin could inhibit cell viability in a time-dependent manner, which was associated with the induction of apoptotic cell death such as increased populations of apoptotic- sub G1 phase. Apoptosis of U937 cells by esculetin was associated with an inhibition of Bcl-2/Bax binding activity, formation of tBid, down-regulation of X-linked inhibitor of apoptotic protein (XIAP) expression, and up-regulation of death receptor 4 (DR4) and FasL expression. Esculetin treatment also induced the degradation of ${\beta}$-catenin and DNA fragmentation factor 45/inhibitor of caspase-activated DNase (DFF45/ICAD). Furthermore, a caspase-3 specific inhibitor, z-DEVD-fmk, significantly inhibited sub-G1 phase DNA content, morphological changes and degradation of ${\beta}$-catenin and DEE45/ICAD. These results indicated that a key regulator in esculetin-induced apoptosis was caspase-3 in human leukemia U937 cells.

Bacterial Community Dynamics during Swine In vitro Fermentation Using Starch as a Substrate with Different Feed Additives for Odor Reduction

  • Alam, Md.J.;Jeong, C.D.;Mamuad, L.L.;Sung, H.G.;Kim, D.W.;Cho, S.B.;Lee, K.;Jeon, C.O.;Lee, Sang-S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권5호
    • /
    • pp.690-700
    • /
    • 2012
  • The experiment was conducted by in vitro fermentation and bacterial community analysis to investigate the reduction of odorous compounds in response to the use of feed additives (FA) during carbohydrate overload in growing pigs. Soluble starch at 1% (control) and various FA at 0.1% Ginseng meal (FA1); Persimmon leaf (FA2); Gingko nut (FA3) and Oregano lippia (FA4) were added to fecal slurry and incubated anaerobically for 12 and 24 h. In vitro parameters and microbial diversity of the dominant bacteria following fermentation were analyzed using Denaturing Gradient Gel Electrophoresis (DGGE), band cloning and sequencing of the V3 region. Results showed that total gas production increased with the advancement of incubation (p<0.05). pH values of FAs and control groups were decreased except the FA4 group which increased somewhat from 12 to 24 h (p<0.05). Ammonia nitrogen ($NH_3$-N) and $H_2S$ gas concentrations were comparatively lower in both stages in FA4 treatment than in the other groups (p<0.05). Hence, $NH_3$-N concentrations in liquid phases were increased (p<0.05) from 12 to 24 h, but the trend was lowest in FA4 than in the other groups at both stages. The total VFA production was comparatively lower and butyrate levels were moderate in FA4 group than in the the other groups during both stages (p<0.05). Indirect odor-reducing compounds such as $NO_2$, $NO_3$ and $SO_4$ concentrations were higher in the FA4 and FA3 than in the other groups at 24 h (p<0.05). After fermentation, ten dominant bands appeared, six of which appeared in all samples and four in only the FA4 treated group. The total number of DGGE bands and diversity was higher in the FA4-group compared to other groups. Additionally, similarity indices were lowest (71%) in the FA4, which represented a different bacterial community compared with the other groups. These findings indicate that $NH_3$-N, $H_2S$ and VFA production was minimal, and pH was also better in the FA4 group than in the other groups. Furthermore, the conversion of odor-reducing indirect compounds or their intermediates was higher in the FA4 group in compared to the other groups. FA4 group generated less odorous products and more indirect products by in vitro fermentation at 24 h, and their microbial pattern appeared to differ from that of the other groups. These findings suggest that this particular FA could change the microbial population, which may have a beneficial effect on odor reduction. It is recommended that the oregano lippia may be supplied to growing pigs as FA along with excess carbohydrate sources to reduce the production of odorous compounds.

기장 종자 유래 추출물의 인간 유방암 MDA-MB-231 세포에 대한 세포독성에 관련된 미토콘드리아 손상-의존적 아폽토시스 유도 효과 (Apoptotic Effect of Proso Millet Grains on Human Breast Cancer MDA-MB-231Cells Is Exerted by Activation of BAK and BAX, and Mitochondrial Damage-mediated Caspase Cascade Activation)

  • 전도연;한초롱;김영호
    • 생명과학회지
    • /
    • 제33권1호
    • /
    • pp.15-24
    • /
    • 2023
  • 잡곡 류에 속하는 기장(Panicum miliaceum L.)의 항암 효과를 알아보기 위해, 기장의 종자를 80% 에탄올(EtOH)로 추출하였으며, 이를 감압 농축하여 건조시키고 재차 물에 녹인 후 4가지 유기용매(헥산, 메틸렌크로라이드, 에틸아세테이트 및 부탄올)로 순차적으로 추출 분획하였다. 다양한 인간 암세포에 대하여 80% 에탄올 추출물의 세포독성을 조사한 결과, 인간 유방암 세포주 MDA-MB-231에 대한 세포독성 효과가 가장 강하게 나타났다. 또한 에탄올 추출물 유래 각 유기용매 분획들 중에서 세포독성이 가장 높게 나타난 부탄올 분획을 사용하여, 유방암 세포주 MDA-MB-231에 대한 아폽토시스성 세포사멸 유도 효과를 조사하였다. 그 결과로서, BAK/BAX 활성화, 미토콘드리아 막 전위(Δψm) 손실, 미토콘드리아 시토크롬 c 방출, 카스파아제-8/-9/-3의 활성화, PARP의 분해, 그리고 TUNEL-양성 아폽토시스성 DNA 단편화와 같은 아폽토시스 반응들이 검출되었다. 한편, 인간 급성백혈병 Jurkat T 세포의 A3 클론(야생형), I2.1 클론(FADD-결손형) 및 I9.2 클론(카스파아제-8 결손형)은 부탄올 분획의 세포독성에 대해 유사한 감수성을 나타내었는데, 이는 부탄올 분획의 아폽토시스 유도 활성에는 외인성 아폽토시스 기전이 관련되지 않음을 시사한다. 흥미롭게도, 인간 정상 유방 상피세포 MCF-10A는 유방암 MDA-MB-231세포에 비해 부탄올 분획의 세포독성에 대하여 훨씬 낮은 감수성를 보였다. 이러한 연구결과는 기장 종자 유래 부탄올 분획의 인간 유방암 세포주 MDA-MB-231에 미치는 세포독성효과는 BAK/BAX 활성화에 따른 미토콘드리아 외막 손상 및 시토크롬 c 방출, 이에 수반되는 카스파아제 활성화에 의해 매개됨을 보여준다.