• 제목/요약/키워드: Farm efficiency

검색결과 447건 처리시간 0.024초

A Production Efficiency Analysis of Cucumber Farms in South Korea (시설오이 재배농가의 생산효율성 분석)

  • Kim, Hae-min;Jang, Min-ki;Yi, Hyang-Mi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제16권10호
    • /
    • pp.6823-6831
    • /
    • 2015
  • The purpose of this study is to analyse cucumber farms managing efficiency and to draw some factors needed to maximize farms production efficiency. After reviewing and analysing some cucumber farms main management index in detail, we found that, compared to scale improvement, technical efficiency has more potential to increase cucumber farms income. Moreover There is a positive correlation between cucumber production and farms pure technical efficiency slightly, but because of the degree, we suggested to reduce input elements for enhancing pure technical efficiency under certain conditions.

Characteristics of Wind Environment in Dongbok·Bukchon Wind Farm on Jeju (제주 동복·북촌 풍력발전단지의 바람환경 특성분석)

  • Jeong, Hyeong-Se;Kim, Yeon-Hee;Choi, Hee-Wook
    • New & Renewable Energy
    • /
    • 제18권1호
    • /
    • pp.1-16
    • /
    • 2022
  • Climatic characteristics were described using the LiDAR (Light Detection and Ranging) and the met-mast on Dongbok·Bukchon region. The influences of meteorological conditions on the power performance of wind turbines were presented using the data of Supervisory Control And Data Acquisition (SCADA) and met-mast of the Dongbok·Bukchon Wind Farm (DBWF) located in Jeju Island. The stability was categorized into three parameters (Richardson number, Turbulence intensity, and Wind shear exponent). DBWF was dominant in unstable atmospheric conditions. At wind speeds of 14 m/s or more, the proportion of slightly unstable conditions accounted for more than 50%. A clear difference in the power output of the wind turbine was exhibited in the category of atmospheric stability and turbulence intensity (TI). Particularly, a more sensitive difference in power performance was showed in the rated wind speeds of the wind turbine and wind regime with high TI. When the flow had a high turbulence at low wind speeds and a low turbulence at rated wind speeds, a higher wind energy potential was produced than that in other conditions. Finally, the high-efficiency of the wind farm was confirmed in the slightly unstable atmospheric stability. However, when the unstable state become stronger, the wind farm efficiency was lower than that in the stable state.

Evaluating Solar Light Collectors for Use in Closed Plant Production Systems (폐쇄형 식물생산 시스템에서 태양광 채광시스템 연구)

  • Lee, Sanggyu;Lee, Jaesu;Lee, Hyundong;Baek, Jeonghyun;Rho, Siyoung;Hong, Youngsin;Park, Jongwon
    • Journal of Environmental Science International
    • /
    • 제28권5호
    • /
    • pp.521-526
    • /
    • 2019
  • In this study, a solar light collector that collects and transmits solar light required for crop production in a closed plant production system was developed. The solar light collector consisted of a Fresnel lens for collecting solar light, and a tracking actuator for tracking solar light from sunrise to sunset to increase the light collection efficiency. The optical fiber that transmitted solar light was made of Glass Optical Fiber (GOF), and it had an excellent optical transmission rate. After collecting the solar light, the amount of light was measured at 5, 10, 15, 20, 25, and 30 cm distances from the GOF through the darkroom by using a light sensor logger connected to a quantum and pyranometer sensor. Compared with solar light, the light intensity of pyranometer sensor measured at 5 cm was 114% higher than solar light, and 61% at 10 cm. In addition, it was observed that it is possible to transmit the necessary amount of light for growing crops up to about 15 cm (as over 22%) through GOF. Therefore, adding diffusers to the solar light collector should be expected to replace artificial light in plant factories or plug seedlings nurseries for leafy vegetables. More studies on the solar light collection devices and the light transmission devices that have high light collection efficiency should be conducted.

Layout optimization for multi-platform offshore wind farm composed of spar-type floating wind turbines

  • Choi, E.H.;Cho, J.R.;Lim, O.K.
    • Wind and Structures
    • /
    • 제20권6호
    • /
    • pp.751-761
    • /
    • 2015
  • A multi-platform offshore wind farm is receiving the worldwide attention for the sake of maximizing the wind power capacity and the dynamic stability at sea. But, its wind power efficiency is inherently affected by the interference of wake disturbed by the rotating blades, so its layout should be appropriately designed to minimize such wake interference. In this context, the purpose of this paper is to introduce a layout optimization for multi-platform offshore wind farm consisted of 2.5MW spar-type floating wind turbines. The layout is characterized by the arrangement type of wind turbines, the spacing between wind turbines and the orientation of wind farm to the wind direction, but the current study is concerned with the spacing for a square-type wind farm oriented with the specific angle. The design variable and the objective function are defined by the platform length and the total material volume of the wind farm. The maximum torque loss and overlapping section area are taken as the constraints, and their meta-models expressed in terms of the design variable are approximated using the existing experimental data and the geometry interpretation of wake flow.

The Labor and Everyday Life of Organic Farm Households Coulpes (유기농가 부부의 노동과 일상생활)

  • Huh, Mee-Young
    • Korean Journal of Organic Agriculture
    • /
    • 제16권3호
    • /
    • pp.239-258
    • /
    • 2008
  • This study identifies the spectrum of different forms of sharing labor in farm houses following the increase in the production of organic produce and deals with the gender division of labor and every day life of the farm households. The increased labor burdens of organic farming give more work opportunities to wives, weakening the gender barriers. However, some of the farm households seeking for economic feasibility are strengthening the gender barriers by specialized work divisions, leading to outside order labor of harvest, sorting, and packaging in order to increase efficiency in agricultural management in extreme cases. Even in the alternative distribution system, farm households has become subject to the distribution system as it is shown that coop claimed the segmentation of sorting work. This is because the convenience of the customers goes before the advantages of producers. Jinju, seeking for economic feasibility, has established the springboard for growth by greenhouse through monoculture and specialization and are operating economic growth stably. Farm couples with this condition, where their incomes are relatively high, are attempting to recharge their energy during low seasons. It is expected that this will be a model case of conventionalization of organic farming. Significance of organic farming in this matter is discussed.

  • PDF

Statistical analysis of Production Efficiency on the Strawberry Farms Using Smart Farming (스마트팜 도입 딸기농가의 생산효율성 통계분석)

  • Choi, Don-Woo;Lim, Cheong-Ryong
    • Journal of Korean Society for Quality Management
    • /
    • 제46권3호
    • /
    • pp.707-716
    • /
    • 2018
  • Purpose: This study aims to analyze the management performance and production efficiency of strawberry farmers who introduced smart farming, one of the primary symbols of the fourth industrial revolution in the agricultural sector. Methods: We conducted an empirical survey of strawberry farms using smart farming and analyzed production efficiency using DEA method. Results: First, difficulties for strawberry farmers introducing smart farming included time and money spent on parts replacement and additional costs due to compatibility problems with existing facilities after the adoption. Second, strawberry farmers using smart farming increased their total income by producing higher yield and improving quality thanks to the competent growth management. Third, the analysis of production efficiencies before and after smart farming found improvement in technical efficiency, pure technical efficiency, and scale efficiency. But, the gaps in technical and scale efficiencies among the farms widened. Conclusion: Based on the results above, following policy suggestions are offered. First, an environment control technology suitable for strawberry farming needs to be developed. Second, the smart farming technology needs to be standardized by the government. Third, new smart farm models need to be developed to accommodate to the facilities and environment in Korea through collecting big data including high-quality data on the environment, growth, and yield. Fourth, continuing education needs to be provided to narrow the gap in smart farming technology among strawberry farmers.

Effects of Sources and Quality of LED Light on Response of Lycium chinense of Photosynthetic Rate, Transpiration Rate, and Water Use Efficiency in the Smart Farm

  • Lee, Seungyeon;Hong, Yongsik;Lee, Eungpill;Han, Youngsub;Kim, Euijoo;Park, Jaehoon;Lee, Sooin;Jung, Youngho;You, Younghan
    • Korean Journal of Ecology and Environment
    • /
    • 제52권2호
    • /
    • pp.171-177
    • /
    • 2019
  • Smart farm is a breakthrough technology that can maximize crop productivity and economy through efficient utilization of space regardless of external environmental factors. This study was conducted to investigate the optimal growth and physiological conditions of Chinese matrimony vine (Lycium chinense) with LED light sources in a smart farm. The light source was composed of red+blue and red+blue+white mixed light using a LED system. In the red+blue mixed light, red and blue colored LEDs were mixed at ratios of 1:1, 2:1, 5:1, and 10:1, with duty ratios varied to 100%, 99%, and 97%. The experimental results showed that the photosynthetic rate according to the types of light sources did not show statistically significant differences. Meanwhile, the photosynthetic rate according to the mixed ratio of the red and the blue light was highest with the red light and blue LED ratio of 1:1 while the water use efficiency was highest with the red and blue LED ratio of 2:1. The photosynthetic rate according to duty ratio was highest with the duty ratio of 99% under the mixed light condition of red+blue+white whereas the water use efficiency was highest with the duty ratio of 97% under the mixed light of red+blue LED. The results indicate that the light source and light quality for the optimal growth of Lycium chinense in the smart farm using the LED system are the mixed light of red+blue (1:1) and the duty ratio of 97%.

The effects of LED light quality on ecophysiological and growth responses of Epilobium hirsutum L., a Korean endangered plant, in a smart farm facility

  • Park, Jae-Hoon;Lee, Jung-Min;Kim, Eui-Joo;You, Young-Han
    • Journal of Ecology and Environment
    • /
    • 제46권3호
    • /
    • pp.161-171
    • /
    • 2022
  • Background: Epilobium hirsutum L. is designated as an endangered plant in South Korea located in Asia, due to the destruction of its habitats through the development of wetlands. Therefore, in this study, in order to find a light condition suitable for the growth and ecophysiological responses of Epilobium hirsutum L., those of this plant under treatment with various light qualities in a smart farm were measured. Results: In order to examine the changes in the physiological and growth responses of Epilobium hirsutum L. according to the light qualities, the treatment with light qualities of the smart farm was carried out using the red light: blue light irradiation time ratios of 1:1, 1:1/2, and 1:1/5 and a red light: blue light: white light irradiation time ratio of 1:1:1. As a result, the ecophysiological responses (difference between leaf temperature and atmospheric temperature, transpiration rate, net photosynthetic rate, intercellular CO2 partial pressure, photosynthetic quantum efficiency) to light qualities appeared differently according to the treatments with light qualities. The increase in the blue light ratio increased the difference between the leaf temperature and the atmospheric temperature and the photosynthetic quantum efficiency and decreased the transpiration rate and the intercellular CO2 partial pressure. On the other hand, the white light treatment increased the transpiration rate and intercellular CO2 partial pressure and decreased the temperature difference between the leaf temperature and the ambient temperature and photosynthetic quantum efficiency. Conclusions: The light condition suitable for the propagation by the stolons, which are the propagules of Epilobium hirsutum L., in the smart farm, is red, blue and white mixed light with high net photosynthetic rates and low difference between leaf temperature and atmospheric temperature.

Development and Evaluation of a Simulation Model for Dairy Cattle Production Systems Integrated with Forage Crop Production

  • Kikuhara, K.;Kumagai, H.;Hirooka, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권1호
    • /
    • pp.57-71
    • /
    • 2009
  • Crop-livestock mixed farming systems depend on the efficiency with which nutrients are conserved and recycled. Home-grown forage is used as animal feed and animal excretions are applied to cultivated crop lands as manure. The objective of this study was to develop a mixed farming system model for dairy cattle in Japan. The model consisted of four sub-models: the nutrient requirement model, based on the Japanese Feeding Standards to determine requirements for energy, crude protein, dry matter intake, calcium, phosphorus and vitamin A; the optimum diet formulation model for determining the optimum diets that satisfy nutrient requirements at lowest cost, using linear programming; the herd dynamic model to calculate the numbers of cows in each reproductive cycle; and the whole farm optimization model to evaluate whole farm management from economic and environmental viewpoints and to optimize strategies for the target farm or system. To examine the model' validity, its predictions were compared against best practices for dairy farm management. Sensitivity analyses indicated that higher yielding cows lead to better economic results but higher emvironmental load in dairy cattle systems integrated with forage crop production.

Analysis of losses within SMES system for compensating output fluctuation of wind power farm

  • Park, S.I.;Kim, J.H.;Le, T.D.;Lee, D.H.;Kim, D.J.;Yoon, Y.S.;Yoon, K.Y.;Kim, H.M.
    • Progress in Superconductivity and Cryogenics
    • /
    • 제16권4호
    • /
    • pp.57-61
    • /
    • 2014
  • Output fluctuation which is generated in wind power farm can hinder stability of total power system. The electric energy storage (EES) reduces unstable output, and superconducting magnetic energy storage (SMES) of various EESs has the proper performance for output compensation of wind power farm since it charges and discharges large scale power quickly with high efficiency. However, because of the change of current within SMES, the electromagnetic losses occur in the process of output compensation. In this paper, the thermal effect of the losses that occur in SMES system while compensating in wind power farm is analyzed. The output analysis of wind power farm is processed by numerical analysis, and the losses of SMES system is analyzed by 3D finite element analysis (FEA) simulation tool.