• Title/Summary/Keyword: Farm disinfectants

Search Result 9, Processing Time 0.025 seconds

Antimicrobial efficacies of alkaline disinfectant solution and commercial disinfectants against Brucella ovis

  • Yoo, Jong-Hyun
    • Korean Journal of Veterinary Service
    • /
    • v.32 no.4
    • /
    • pp.347-351
    • /
    • 2009
  • Bruella spp. involves a considerable danger of public health and farm animal industry. In this study, we assessed the disinfection efficacy of alkaline disinfectant solution and three commercial farm disinfectants (quaternary ammonium compound, sodium dichloroisocyanurate, potassium monopersulphate/sodium dichloroisocyanurate) against Brucella ovis. A bactericidal efficacy test by broth dilution method was used to determine the lowest effective dilution of selected disinfectants following exposure to test bacteria for 30 minutes at $4^{\circ}C$. Disinfectants and test bacteria are diluted with distilled water (DW), hard water (HW) or organic matter suspension (OM) according to treatment condition. Three commercial disinfectant showed excellent antimicrobial activity (up to dilution of $\times200$ in OM treatment). Alkaline disinfectant solution demonstrated favorable bactericidal efficacy against B. abortus (at dilution of $\times20$ in OM treatment). Three commercial farm disinfectants possess excellent efficacy against B. ovis. Alkaline disinfectant solution has lower potency than commercial farm disinfectant but could help to limit the spread of brucellosis.

Resistance on disinfectants of Clostridium chauvoei isolated from Kyongbuk province (경북지역에서 분리된 기종저균의 소독제에 대한 내성)

  • Kim, Soon-Tae;Kim, Sin;Kim, Woo-Hyun;Gwon, Heon-Il
    • Korean Journal of Veterinary Service
    • /
    • v.22 no.1
    • /
    • pp.85-92
    • /
    • 1999
  • This study was investigated resistance on disinfectants and antibiotics of Clostridium chauvoei isolated from dairy farm in Kyongbuk province. The results obtained were summarized as follows ; C chauvoei isolated from dairy farm were susceptible to norfloxacin, penicillin, tetracycline, erythromycin, enrofloxacin, bacitracin, tyrosine, cephalothin and cefazolin but resistant to gentamicin, kanamycin, sulfamethoxazole+trimethoprim, amikacin, neomycin streptomycin, colistin. In effect on disinfectants, C chauvoei was inhibited completely to growth in mercuric bichloride ($HgCl_2$), harasol(sodium hypochloride 4-6%), long-life(high boiling tar acids et al), and phenol($C_6$$H_5$OH), but growth in all-stop(didecyl dimethyl ammonium chloride 10%), powercide(potassium monopersulphate 50% et al), antec vercon-s(triple salt 50% et al), and taego-51(6-alkyl-2.6-diaza-hexane-carbonic acid-1ㆍHCl et al). The effect of disinfectant was excellent in mercuric bichloride and harasol.

  • PDF

Disinfection of various materials with 3-(trimethoxysilyl)-propyldimethyloctadecyl ammonium chloride in hatchery facilities

  • Kim, Yu-Jin;Kim, Jun-Beom;Song, Chang-Seon;Nahm, Sang-Soep
    • Animal Bioscience
    • /
    • v.35 no.4
    • /
    • pp.631-637
    • /
    • 2022
  • Objective: Surface disinfection is important in the proper running of livestock farms. However, disinfection of farm equipment and facilities is difficult because they are made of different materials, besides having large surface areas and complex structures. 3-(trimethoxysilyl)-propyldimethyloctadecyl ammonium chloride (Si-QAC) is a quaternary ammonium salt-based disinfectant that attaches to various surfaces by forming covalent bonds and maintains its disinfecting capacity for a considerable time. Our aim was to evaluate the potential use of Si-QAC for disinfection of farm equipment and facilities. Methods: The short- and long-term antimicrobial and antiviral effects of Si-QAC were evaluated in both laboratory and farm settings using modified quantitative assessment method based on the standard operating procedures of the United States Environmental Protection Agency. Results: Si-QAC was highly effective in controlling the growth of the Newcastle disease virus and avian pathogenic Escherichia coli. Electron microscopy revealed that the mechanism underlying the disinfection activity of Si-QAC was associated with its ability to damage the outer membrane of the pathogen cells. In the field test, Si-QAC effectively reduced viral contamination of surfaces of equipment and space. Conclusion: Our results suggest that Si-QAC has great potential as an effective chemical for disinfecting farm equipment and facilities. This disinfectant could retain its disinfection ability longer than other commercial disinfectants and contribute to better farm biosecurity.

Inactivation by Chemical Disinfectants in vitro against Tobacco Mosaic Virus (화학적 제어제에 의한 담배모자이크 바이러스의 불활성화)

  • Choi, C.W
    • The Journal of Natural Sciences
    • /
    • v.10 no.1
    • /
    • pp.17-21
    • /
    • 1998
  • Numerous chemicals were tasted to show antiviral activity in vitro against tobacco mosaic virus (TMV). With a brief exposure of TMV to 1 N HCl or 1-0.1 N NaOH, Virions and their encapsidated RNAs were degraded completely and rapidly. When TMV was exposed to 0.1 N HCl, the hydrolysis of viral capsid in 5 min after treatment was observed in the 1% agarose gel. Virions and their encapsidated RNAs were not degraded by 0.01N HCl of 0.01N NaOH. These characteristics indicate that a short exposure to optimal concentration of acid or base is of practical value in eliminating infectious virus. The treatment of 50% isopropanol or UV light did not damage in viral integrity or their encapsidated RNAs. Disinfection of the agricultural tools and laboratory equipments using appropriate disinfectants is necessary to prevent cross contamination if farm and laboratory.

  • PDF

Comparison of the Efficacy of Disinfectants to Control Caseous Lymphadenitis in Korean Black Goat Farms (흑염소의 건락성 림프절염 제어를 위한 소독제 효능 비교)

  • Cho, Hyeunwoo;Kim, Yeona;Jang, Beomsoon;Kim, Chan-Lan;Park, Kun Taek
    • Journal of Food Hygiene and Safety
    • /
    • v.37 no.5
    • /
    • pp.317-322
    • /
    • 2022
  • Corynebacterium pseudotuberculosis is the causative agent of caseous lymphadenitis (CLA), a chronic contagious disease in small ruminants. The prevalence of CLA has been reported to be >50% in Korean black goats. CLA is difficult to control due to a lack of efficient vaccines and treatment methods. Effective disinfection of the farm environment may be an alternative strategy for reducing the spread of C. pseudotuberculosis. The objective of this study was to evaluate the efficacy of commercial disinfectants against CLA. The six commercial disinfectants, largely composed of sodium dichloroisocyanurate, sodium hypochlorite, potassium monopersulfate triple salt, quaternary ammonium, citric acid, and copper sulfate, were tested against five different genotypes of C. pseudotuberculosis isolated from goat farms in Korea. Efficacy tests were performed in accordance with the disinfectant efficacy test guidelines recommended by the Animal and Plant Quarantine Agency of Korea with slight modifications. All disinfectants except for copper sulfate exhibited >99.99% killing efficacy under hard water conditions following 30 min of incubation, which is the recommended standard treatment time according to guidelines. The minimum bactericidal treatment time was evaluated by employing treatments for durations of 1, 5, and 15 min. The most effective compounds under hard water conditions were sodium dichloroisocyanurate, potassium monopersulfate triple salt, and sodium hypochlorite, exhibiting >99.99% killing efficacy after 1 min of treatment. In the aqueous solution forms, citric acid and the quaternary ammonium compound were the most effective, but required at least 5 min to kill >99.99% of the bacteria. The current study characterizes the killing efficacy of six commercial disinfectant active compounds against C. pseudotuberculosis. Thus, this study provides essential information regarding the efficacy of the disinfectants used to control CLA in goat farms.

Efficacy of Commercial Sanitizers for the Inactivation of Listeria monocytogenes on the Processing Equipment for Enoki Mushrooms (팽이버섯 재배 현장에서 Listeria monocytogenes의 성장을 억제하기 위한 살균 처리 기술 개발)

  • Kyung Min Park;Su-Bin Lee;Do-Young Jung;Song-Yi Choi;Injun Hwang;Se-Ri Kim
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.6
    • /
    • pp.508-516
    • /
    • 2023
  • The consumption of enoki mushrooms has been associated with cases of listeriosis produced by Listeria monocytogenes, highlighting the significance of sanitizing food-contact surface, such as the velcro used in welding processing of enoki mushrooms, to ensure microbial safety. We investigated the inhibitory activity of nine chemical disinfectants at regular concentrations against L. monocytogenes isolated from a mushroom farm environment. The bacterial suspension was prepared in phosphate buffered saline and mushroom extract broth and inoculated onto the velcro surface. After inoculation, most disinfectants reduced the initial 8 log CFU/coupon concentration by less than 2 log CFU/coupon during a 5-min treatment. Slightly acidic hypochlorous water showed a reduction of approximately 4 log CFU/coupon when tested for more than 30 min at the maximum allowable concentration of 200 mg/L. Sodium hypochlorite solution showed a reduction of approximately 5 log CFU/coupon when used at 100 mg/L for 60 min. Peracetic acid, at the maximum allowable concentration of 300 mg/L, showed the most effective reduction of 5 log CFU/coupon or more when the surface was treated with 37.5 mg/L for 30 min. These results indicate that peracetic acid can be used as the disinfectant strategy to control cross-contamination of L. monocytogenes on the velcro surface of plastic wrappers used in the welding processing of enoki mushrooms.

Evaluation of Microbial Analysis and Application of Reduction Technology in a Dairy Factory (목장형 유가공장의 미생물 분석 및 저감기술 적용 평가)

  • Jong-Hui Kim;Eun-Seon Lee;Bu-Min Kim;Jun-Sang Ham;Mi-Hwa Oh
    • Journal of Dairy Science and Biotechnology
    • /
    • v.41 no.4
    • /
    • pp.203-210
    • /
    • 2023
  • Bacterial contamination negatively affects the quality, functionality, and safety of dairy products. Adherent populations of bacteria, referred to as biofilms, grow on the surfaces of dairy processing equipment and are the primary cause of dairy contamination. In addition, microorganisms present in the farm environment and dairy factory can contaminate the Clear-In-Place (CIP) line through raw milk transport pipes; therefore, exhaustive management is required. In dairy manufacturing facilities, biofilm formation is controlled using CIP systems that primarily require sodium hydroxide and nitric acid. However, the leakage or incomplete removal of these potently active compounds can be harmful to humans. In the present study, we compared the eradication of Escherichia coli and other bacteria using commercially available combinations of sodium hypochlorite (NaClO) and citric acid, which are recognized by the Korean Ministry of Food and Drug Safety (MFDS) as food disinfectants. When considered in the CIP system of the field manufacturing process, E. coli was not detected (compared to detection before treatment), and other bacteria were detected at 0-32 culture-forming units (CFU)/cm2. The residual amount of chlorine ions after CIP treatment was similar to that in tap water, and there was no significant difference in the overall components of the fermented dairy products. Therefore, the NaClO/citric acid CIP system can be safely applied in dairy manufacturing processes.

Dehydrating and bacterial elimination effects of fecal dehydrating system for reducing bovine mastitis derived from environmental contamination (환경유래 젖소유방염 저감을 위한 우분뇨 탈수 시스템의 탈수 및 유방염 원인체 제균 효과 규명)

  • Kim, Dong Hyeok;Lim, Jung Ju;Lee, Jin Ju;Kim, Dae Geun;Chang, Hong Hee;Lee, Seung Joo;Lee, Yun Beom;Chang, Dong Il;Lee, Hu Jang;Min, Won-Gi;Kim, Sang Hun;Oh, Kwon Young;Kim, Suk
    • Korean Journal of Veterinary Research
    • /
    • v.49 no.3
    • /
    • pp.257-263
    • /
    • 2009
  • Bovine mastitis is an important disease causing serious economic loss in dairy production and food poison in public health. Escherichia coli and Staphylococcus aureus are the major causative agents of bovine mastitis. These bacteria were found in milk and environmental condition such as feces, water, soil and so on. Bovine mastitis causative micro-organisms can survive in 1-2 weeks in feces and bed complexes. Low level of percentage of water content (PWC) of feces and bed complexes can reduce the spreading of bovine mastitis incidence from environmental contamination. In this study, we developed the fecal dehydrating system and determined the elimination rates of bovine mastitis causative agent from feces and bed complexes. To develop the fecal dehydrating system, the screw pressurized dehydrating system was used and the maximum rate of dehydrating was reached to 52% PWC using 90% PWC (wet base) of fecal and bed complexes. The elimination rates of the dehydrating system for E. coli and S. aureus were reached at 41.19 $\pm$ 7.84% to 62.55 $\pm$ 8.71% in various percentages of PWC of feces and bed complexes (80, 85 and 90%). These results suggested that the application of fecal dehydrating system would reduce the exposure of dairy cattle to bovine mastitis causing agents contaminated feces and bed complexes, and can be used for environmental bovine mastitis control avoiding misuse or abuse of chemical disinfectants and antibiotics in dairy farm.

Prophylactic and therapeutic studies on intestinal giant-cystic disease of the Israel carp caused by Thelophanellus kitauei II. Effects of physical and chemical factors on T. kitauei spores in vitro (향어의 장포자충(Thelohanellus kitauei)증의 예방 및 치료에 관한 기초적 연구 II. 물리화학적 요인이 장포자충 포자에 미치는 영향)

  • Lee, Jae-Gu;Kim, Jong-O;Park, Bae-Geun
    • Parasites, Hosts and Diseases
    • /
    • v.28 no.4
    • /
    • pp.241-252
    • /
    • 1990
  • In a basic attempt to develop the prophylactic and therapeutic measures on intestinal giantcystic disease of the Israel carp, C), prinks carpio nudum, the effects of physical and chemical factors on viability or survival of the spores of Thelchcnellus kiteuei were checked in vitro by means of extrusion test on the polar filament. When the fresh spores suspended with 0.45% and 0.9% scdium chloride solution and distilled water were laid at $5^{\circ}C$ and $28^{\circ}C$ for short terms, the extrusion rates increased until the 3rd day, meanwhile when son;e of them were suspended with Tyrode's solution at $-70^{\circ}C$ the rates increased gradually until the 8th day. Viabilities of the spores suspended with 0.9% saline and added antibiotics to the suspension at $5^{\circ}C$ for long terms lasted for 997 days and 1, 256 days (presumed values) at maximum, respectively. The spores suspended with distilled water at $28^{\circ}C$ for long terms survived 152.4 days, but the spores suspended with Tyrode's solution at $-70^{\circ}C$ for long terms showed almost the same viable pattern as early freezing stages up to 780 days. The spores suspended with Tyrode's solution, frozen at $-70^{\circ}C$ and thawed at $5^{\circ}C$, showed the highest rate of extrusion of the polar filament. In the case of frozen spores, the extrusion rates during heating tend to become higher in accordance with the increase of frozen period, and the critical points of 180 day-frozen spores to be killed were generally 78.5 hr. at $60^{\circ}C$, 23.4 hr. at $70^{\circ}C$, 189.1 min. at $80^{\circ}C$ or 10.5 min. at $90^{\circ}C$. The longer the spores were frozen, the more time was needed for the death of spores after thawing; 20 days-17.4 days, 100 days-33.2 days, and 400 days-37.8 days. The longer the spores were frozen, the more time was needed for the death of spores at a conventional when they were dried air drying condition, 540 days-23.5 days, 160 days-21.0 days, and 20 days-14.4 days. On the other hand, the longer the spores were frozen, the more spores were dead rapidly when they were irradiated with 10W UV-ray; 100 days-26.0 hr, 300 days-21.9 hr, and 540 days-13.9 hr. The time needed for killing 200 days-frozen spores by various disinfectants at 1, 000 ppd was 5.2 min. by calcium oxide, 10.4 min. by potassium permanganate, 27.8 min. by malachite green and 14.3 hr. by formalin. Transient inhibitory effects of the extrusion of the polar filament were observed by various antiprotozoal and antifungal agents in the descending order of ketoconazole. metronidasole and dapsone. The above results presume that full drying, followed by spraying CaO and maintaining sunny condition for a few days on the concrete bottoms of knish farm may be an effective method for the prevention of intestinal giant.cystic disease.

  • PDF