• Title/Summary/Keyword: Faraday Cup

Search Result 38, Processing Time 0.035 seconds

Characterization of a Micro-Laser-Plasma Electrostatic-Acceleration Hybrid-Thruster

  • Akira Igari;Masatoshi Kawakami;Hideyuki Horisawa;Kim, Itsuro ura
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.271-277
    • /
    • 2004
  • As one of the concepts of the laser/electric hybrid propulsion system, a feasibility study on possibilities of electrostatic acceleration of a laser ablation plasma induced from a solid target was conducted. Energy distributions of accelerated ions were measured by a Faraday cup. A time-of-flight measurement was also conducted for ion velocity measurement. It was found that an average speed of ions from a pure laser ablation in this case was about 20 km/sec for pulse energy of 40 $\mu$J/pulse with pulse width of 250 psec. On the other hand, through an electrostatic field with a + I ,000 V electrode, the speed could be accelerated up to 40 km/sec. It was shown that the electrode with positive potential was more effective than that with negative potential for positive-ion acceleration in laser induced plasma, or pulsed plasma, in which ions were induced with the Coulomb explosion following electrons. In addition, the ion-acceleration or deceleration strongly depended on conditions of pairs of inner diameter and electrodes gap.

  • PDF

Development of a low energy ion irradiation system for erosion test of first mirror in fusion devices

  • Kihyun Lee;YoungHwa An;Bongki Jung;Boseong Kim;Yoo kwan Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.70-77
    • /
    • 2024
  • A low energy ion irradiation system based on the deuterium arc ion source with a high perveance of 1 µP for a single extraction aperture has been successfully developed for the investigation of ion irradiation on plasma-facing components including the first mirror of plasma optical diagnostics system. Under the optimum operating condition for mirror testing, the ion source has a beam energy of 200 eV and a current density of 3.7 mA/cm2. The ion source comprises a magnetic cusp-type plasma source, an extraction system, a target system with a Faraday cup, and a power supply control system to ensure stable long time operation. Operation parameters of plasma source such as pressure, filament current, and arc power with D2 discharge gas were optimized for beam extraction by measuring plasma parameters with a Langmuir probe. The diode electrode extraction system was designed by IGUN simulation to optimize for 1 µP perveance. It was successfully demonstrated that the ion beam current of ~4 mA can be extracted through the 10 mm aperture from the developed ion source. The target system with the Faraday cup is also developed to measure the beam current. With the assistance of the power control system, ion beams are extracted while maintaining a consistent arc power for more than 10 min of continuous operation.

Space Charge in Polymers Irradiated by an E-Beam (전자빔이 조사된 고분자에서 공간전하)

  • Lee, Jung-Soo;Kim, Dong-Ook
    • Proceedings of the KIEE Conference
    • /
    • 2008.09a
    • /
    • pp.231-232
    • /
    • 2008
  • The surface made of dielectric materials can therefore become probable sites for damaging electrostatic discharges. Thanks to a specially equipped chandler, the spatial environment can be reproduced experimentally in the laboratory. In this paper, the behavior of high energy electrons injected in polymers such as PolyMethylMetaAcrylate (PMMA) and Kpton is studied. Results obtained by surface potential technique, pulse-electro acoustic device and a cell based on the split Faraday cup system are analyzed and discussed.

  • PDF

Emission test of a domestic fabricated cathode with higher current density

  • Ju, Yeong-Do;Gong, Hyeong-Seop;Kim, Seung-Hwan;Tanwar, Anil;Seok, Yeong-Eun;Lee, Byeong-Jun;Hong, Yong-Jun;Sin, Jin-U;So, Jun-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.205.2-205.2
    • /
    • 2016
  • The emission test a domestic fabricated cathode is conducted using an easy-replaceable-emitter-type test bench. A simple cylindrical button type cathode is dropped vertically into a cathode cup holder. The cathode is heated by a tungsten wire heater located around the cup holder. The cathode temperature is measured by an optical pyrometer. A high voltage pulse power supply gives the anode-cathode gap voltage up to 20 kV with the pulse width of 15 us. The emitted current from the cathode is captured at a faraday cup and is measured using current transformer and oscilloscope. The test bench is installed in the vacuum chamber with easy access door and, therefore, the cathode can be easily replaceable. We confirmed the emission current density of $15A/cm^2$ and $80A/cm^2$ with a domestic fabricated B-type cathode and a Scandate cathode, respectively. The detailed test result for the cathode will be presented.

  • PDF

Space Charge Analysis in Polymer Irradiated by Quasi-Monoenergetic Electron Beam (전자빔 조사에 의한 폴리머 내의 공간 전하 분석)

  • Choi, Yong-Sung;Kim, Hyung-Gon;Moon, Jong-Dae;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04c
    • /
    • pp.62-66
    • /
    • 2008
  • Spacecrafts such as most of commercial satellites that are operating in the geostationary orbit can be subjected to intense irradiation by charged particles. The surface made of dielectric materials can therefore become probable sites for damaging electrostatic discharges. Thanks to a specially equipped chamber, the spatial environment can be reproduced experimentally in the laboratory. In this paper, the behavior of high energy electrons injected in polymers such as PolyMethylMetaAcrylate (PMMA) and Kapton is studied. Results obtained by surface potential technique, pulse-electro acoustic device and a cell based on the split Faraday cup system are analyzed and discussed.

  • PDF

Space Charge Analysis in Polymers Irradiated by an E-Beam (전자빔이 조사된 고분자에서 공간전하 분석)

  • Cho, Choong-Won;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.2309-2310
    • /
    • 2008
  • The surface made of dielectric materials can therefore become probable sites for damaging electrostatic discharges. Thanks to a specially equipped chamber, the spatial environment can be reproduced experimentally in the laboratory. In this paper, the behavior of high energy electrons injected in polymers such as PolyMethylMetaAcrylate (PMMA) and Kpton is studied. Results obtained by surface potential technique, pulse-electro acoustic device and a cell based on the split Faraday cup system are analyzed and discussed.

  • PDF

Design Features and Operating Characteristics of the MC-50 Cyclotron (MC-50 싸이클로트론의 설계 특징과 동작 특성)

  • Bak, Hae-Ill;Bak, Joo-Shik
    • Nuclear Engineering and Technology
    • /
    • v.21 no.3
    • /
    • pp.216-222
    • /
    • 1989
  • The MC-50 cyclotron at Korea Canter Center Hospital is now operational for neutron therapy and medical radioisotope production. Design features, mechanical structures and operating characteristics of the MC-50 are described in this paper. Optimum operating condition for this cyclotron has been determined by the repetitive running, and the performances of the internal beam have been investigated through the measurements of intensity and spatial distribution of the internal beam as a function of the radius of the cyclotron. Routinely, the 40 $\mu$A of 50 MeV protons have been obtained at first Faraday cup with a extraction efficiency of 61%.

  • PDF

A study on the relationships between plasma parameters and magnetic field (플라즈마 파라메타와 자계의 상관관계에 관한 연구)

  • 김두환;장윤석;조정수;박정후
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.3
    • /
    • pp.426-431
    • /
    • 1996
  • It is well known that the understanding of the complex mechanism of magnetoplasma is closely related with understanding of the collective behavior of discharge plasma parameters such as the cathode-sheath potential, cathode-sheath thickness, electron temperature, electron density, and ambipolar diffusion. In this paper, some of the relationships between these plasma parameters and magnetic field is investigated experimentally with a Langmuir probe in the magnetoplasma generated by D.C diode system. It is found that when magnetic field is increased, cathode-sheath potential, cathode-sheath thickness, and ambipolar diffusion are decreased. In addition, peak ion density obtained as a parameter of ionic signal voltage by Faraday cup method is independent of magnetic field. (author). 9 refs., 11 figs.,1 tab.

  • PDF

Space Charge Analysis in Polymers Irradiated by Electron Beam (E-빔 조사에 의한 폴리머의 공간전하 해석)

  • Yun, Ju-Ho;Choi, Yong-Sung;Moon, Jong-Dae;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.309-310
    • /
    • 2007
  • Spacecrafts such as most of commercial satellites that are operating in the geostationary orbit can be subjected to intense irradiation by charged particles. The surface made of dielectric materials can therefore become probable sites for damaging electrostatic discharges. Thanks to a specially equipped chamber, the spatial environment can be reproduced experimentally in the laboratory. In this paper, the behavior of high energy electrons injected in polymers such as PolyMethylMetaAcrylate (PMMA) and Kapton is studied. Results obtained by surface potential technique, pulse-electro acoustic device and a cell based on the split Faraday cup system are analyzed and discussed.

  • PDF