• Title/Summary/Keyword: Faraday's Law

Search Result 45, Processing Time 0.025 seconds

A-8 Three -Dimensional Crystalizing Combined $\pi$-Bonding Orbitals ("O" S' Bonding) And Electrical And Mechanical Properties of Alloy Metals

  • Oh, Hung-Kuk
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.03a
    • /
    • pp.90-106
    • /
    • 1995
  • The "O"S' BONDING make metallic and non-metalic crystal structures and form localized superconducting orbitals , which induce electrical conduction , semi-conduction, and superconduction. The orbitals are proced by Ampere's law, Faraday's law , Meissner effect, highcritical temperature of thecopper oxide layers. abnomal trans-membrane signal in cancer cell and plastic deformations bytwins and dislocations, In the case of alloying metals, the most deterimentla cases of electrical conduction are those of solid solution and intermetalic compound . The highest case for the hardness are also those of solid solution and intermetallic compound. It explains the contributions of the "O"S' BONDING for conduction bands and plastic deformation by twins and dislocations.ns and dislocations.

  • PDF

Analysis of Excimer laser ablation via FDTD method (FDTD방법을 이용한 엑시머 레이저 어블레이션 해석)

  • Bae C.H.;Choi K.H.;Kim D.S.;Lee S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.163-164
    • /
    • 2006
  • In this paper, an analytical laser ablation model with Maxwell equation will be addressed by considering relationship between laser ablation and material. The Maxwell equation consists of four equations: two Gauss laws for electric and magnetic fields, Faraday's law, and Ampere's law. This analytical model will be calculated by employing Finite Difference Time Domain (FDTD). This method also makes it possible to simulate the laser beam propagation in a wide range of materials, such as metals, semiconductors, and dielectrics. Therefore, in this study, a numerical model for short pulse laser interaction with materials is developed, focusing on the accurate description of laser beam propagation and ablation process into the material with each pulse.

  • PDF

A Study on the Estimation of the Coefficient of Electrolytic Corrosion according to Concrete Compressive Strength (콘크리트 강도에 따른 철근의 전식계수 산정에 관한 연구)

  • Kang, Taek-Sun;Jee, Namyong;Yoon, Sang-Chun;Kim, Jae-Hun;Kim, Dong-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.834-837
    • /
    • 2004
  • In this study, the electric accelerated reinforcing bar corrosion test was carried out to estimate the coefficient of electrolytic corrosion based on the concept of Faraday's law according to rebar corrosion rate and concrete compressive strength which had an effect on the actual corrosion mass loss. The results of this paper allow the prediction of corrosion amount in the electric accelerated reinforcing bar corrosion test method.

  • PDF

Estimation of Effective Coil Length of Superconducting Generator using 3D FEM

  • Shin, Pan-Seok;Park, Doh-Young
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.12B no.1
    • /
    • pp.7-12
    • /
    • 2002
  • This paper presents a method to estimate an effective length of a 1000-kVA superconducting generator using three-dimensional FE analysis. Flux linkage of stator coil and the induced voltage are calculated with FEM program and Faraday's law. An effective length of the stator coil is estimated using the calculated voltage and geometric configurationn of the machine. In order to verify the estimation method, 30-kVA superconducting generator is built and tested. The test result agrees reasonably well with the estimation.

Phosphorus Removal by Electrolysis with Aluminium Electrodes (알루미늄의 전기분해를 이용한 인 제거)

  • 정경훈;최형일;정오진;최칠남;정재경
    • Journal of Environmental Science International
    • /
    • v.9 no.1
    • /
    • pp.95-99
    • /
    • 2000
  • Laboratory experiments were performed to investigate the effects of various factors on the phosphorus removal by electrolysis with aluminium electrodes. The efficiency of phosphorus removal increases with increasing of voltage applied, surface area of electrodes and electrolyte concentration, and decreasing of electrode distance. The phosphorus removal was not affected by the connection number of an electric circuit. The amount of aluminium ion eluted from electrodes according to Faraday's law was 4.47 mg and the A/P mole ratio was 2.14 at the electric current value of 20 mA.

  • PDF

Study on the Magnetic Field Measurement Using the Ultrasonic Transducer (초음파진동자를 이용한 자계측정방법 연구)

  • 손은영;류주현;윤광희;정영호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.350-355
    • /
    • 1997
  • A new magnetic field measuring system with induced coil is reported. This system consists of air-cared coil that is forced by the ultrasonic transducer. Induction voltage of coil is proportional to the DC magnetic field and the driving frequency of ultrasonic transducer by the principle of Faraday's law. The experimental measuring system is setup, and the possibility of a new magnetic field sensors is confirmed.

  • PDF

Induced Current Calculation in a Human Body Model due to Magnetic field in High Speed Railway (고속철도내 자기장에 의한 인체 모델에서의 유도 전류 계산)

  • Han, In-Su;Lee, Tae-Hyung;Park, Choon-Soo;Kim, Ki-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.208-213
    • /
    • 2008
  • In recent society, the quality of human life has improved due to the use of electric appliances and the high powered electrical equipments. However, lots of electric appliances and equipments generate the electromagnetic field hazard. Many studies have been made about the wrong behavior of machines due to electromagnetic fields, the interferences in communication equipments, the possibility of the electromagnetic field hazard in human body, etc. There exist international standards about the RF equipments (ex. mobile phone, antenna, etc.). But, many researchers involved in power frequency electric and magnetic field only propose the prudential avoidance. In this paper, induced currents in a human body model due to magnetic fields in high speed railway are calculated by two dimensional impedance method. Power frequency(60Hz) magnetic fields are calculated and induced currents are simulated by Faraday's law. Induced currents are simulated with induced voltage, human body model impedances due to Ohm's law, magnetic fields derived from Biot-Savart's law and Transmission Line Method in high speed railway.

  • PDF

Vibration based energy harvesting performance of magneto-electro-elastic beams reinforced with carbon nanotubes

  • Arjun Siddharth Mangalasseri;Vinyas Mahesh;Sriram Mukunda;Vishwas Mahesh;Sathiskumar A Ponnusami;Dineshkumar Harursampath;Abdelouahed Tounsi
    • Advances in nano research
    • /
    • v.14 no.1
    • /
    • pp.27-43
    • /
    • 2023
  • This article investigates the energy harvesting characteristics of a magneto-electro-elastic (MEE) cantilever beam reinforced with carbon nanotubes (CNT) under transverse vibration. To this end, the well-known lumped parameter model is used to represent the coupled multiphysics problem mathematically. The proposed system consists of the MEE-CNT layer on top and an inactive substrate layer at the bottom. The substrate is considered to be made of either an isotropic or composite material. Basic laws such as Gauss's Law, Newton's Law and Faraday's Law are used to arrive at the governing equations. Surface electrodes across the beam are used to harvest the electric potential produced, together with a wound coil, for the generated magnetic potential. The influence of various distributions of the CNT and its volume fraction, substrate material, length-to-thickness ratio, and thickness ratio of substrate to MEE layer on the energy harvesting behaviour is thoroughly discussed. Further, the effect of external resistances and changes in substrate material on the response is analysed and reported. The article aims to explore smart material-based energy harvesting systems, focusing on their behaviour when reinforced with carbon nanotubes. The results of this study may lead to an improved understanding of the design and analysis of CNT-based smart structures.

Numerical analysis of concrete degradation due to chloride-induced steel corrosion

  • Ayinde, Olawale O.;Zuo, Xiao-Bao;Yin, Guang-Ji
    • Advances in concrete construction
    • /
    • v.7 no.4
    • /
    • pp.203-210
    • /
    • 2019
  • Concrete structures in marine environment are susceptible to chloride attack, where chloride diffusion results in the corrosion of steel bar and further lead to the cracking of concrete cover. This process causes structural deterioration and affects the response of concrete structures to different forms of loading. This paper presents the use of ABAQUS Finite Element Software in simulating the processes involved in concrete's structural degradation from chloride diffusion to steel corrosion and concrete cover cracking. Fick's law was used for the chloride diffusion, while the mass loss from steel corrosion was obtained using Faraday's law. Pressure generated by steel corrosion product at the concrete-steel interface was modeled by applying uniform radial displacements, while concrete smeared cracking alongside the Extended Finite Element Method (XFEM) was used for concrete cover cracking simulation. Results show that, chloride concentration decreases with penetration depth, but increases with exposure time at the concrete-steel interface. Cracks initiate and propagate in the concrete cover as pressure caused by the steel corrosion product increases. Furthermore, the crack width increases with the exposure time on the surface of the concrete.

Analysis of Inductive Interference from EHV Transmission to buried Gas Pipelines (초고압 송전선로에서 가스관에 미치는 유도 장해 해석)

  • Lee, Seung-Youn;Ko, Eun-Young;Yun, Suk-Moo;Park, Nam-Ok;Shin, Myung-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.458-460
    • /
    • 2000
  • In this paper, we analyze the inductive coupling between overhead power transmission lines and neighbouring gas pipelines or other conductors, when they parallel to a line section in a phase-to-earth fault is assumed on the transmission line. A numerical procedure employing the finite-element method(FEM) is used in conjunction with Faraday's law, in order to predict the current in a faulted transmission line as well as the induced voltages across points on a pipeline running parallel to the faulted line and remote earth. The results lead to conclusion that may be useful to power system engineers.

  • PDF