• 제목/요약/키워드: Far-field

검색결과 1,931건 처리시간 0.03초

시간 역전을 기반으로 한 지능적 원거리 무선전력전송 (Smart Far-Field Wireless Power Transfer via Time Reversal)

  • 박홍수;홍하영;홍순기
    • 한국전자파학회논문지
    • /
    • 제29권4호
    • /
    • pp.285-289
    • /
    • 2018
  • 본 논문에서는 지능적인 원거리 무선전력전송의 방식으로 시간 역전(time reversal) 기반 전파 집속 방법을 제시하였다. 시간 역전 기반의 무선전력전송은 복잡한 전파환경에서도 기기의 위치에 상관없이 전파를 선택적으로 집속하여 높은 peak 전력을 전달할 수 있다. 현실과 가까운 전파환경 시뮬레이션을 통하여 시간 역전 기반의 시 공간 전파 집속 현상을 검증하였고, 집속된 RF를 정류하여 전달된 DC 전압을 확인하였다. 또한 일반적인 협대역 신호(CW) 대비 시간 역전 신호의 peak 향상률과 정류 전력비를 확인한 결과, 최대 12 dB 향상된 peak 전력이 전송되었으며, 따라서 보다 높은 효율로 전력전송이 이루어짐을 확인하였다.

Evaluation of N2 method for damage estimation of MDOF systems

  • Yaghmaei-Sabegh, Saman;Zafarvand, Sadaf;Makaremi, Sahar
    • Earthquakes and Structures
    • /
    • 제14권2호
    • /
    • pp.155-165
    • /
    • 2018
  • Methods based on nonlinear static analysis as simple tools could be used for the seismic analysis and assessment of structures. In the present study, capability of the N2 method as a well-known nonlinear analysis procedure examines for the estimation of the damage index of multi-storey reinforced concrete frames. In the implemented framework, equivalent single-degree-of-freedom (SDOF) models are utilized for the global damage estimation of multi-degree-of-freedom (MDOF) systems. This method does not require high computational analysis and subsequently decreases the required time of seismic design and assessment process. To develop the methodology, RC frames with period range from 0.4 to 2.0 s under 40 records are studied. The effectiveness of proposed technique is evaluated through numerical study under near- and far-field earthquake ground motions. Finally, the results of developed models are compared with two other simplified schemes along with nonlinear time history analysis results of multi-storey frames. To improve the accuracy of damage estimation, a modified relation is presented based on the N2 method results for near- and far-field earthquakes.

Pull-Off 기만 재밍 신호에 대한 레이다 대응기법 및 효과 분석 (Radar Countermeasure and Effect Analysis for the Pull-Off Deceptive Jamming Signal)

  • 장성훈;김선주
    • 한국군사과학기술학회지
    • /
    • 제23권3호
    • /
    • pp.221-228
    • /
    • 2020
  • This paper presents the radar counter jamming algorithm and ground far-field test results for the pull-off deceptive jamming signals like RGPO(Range Gate Pull Off) and VGPO(Velocity Gate Pull Off). We designed the radar counter jamming algorithm according to the characteristics of the deceptive jamming signals. This algorithm is validated by simulation before ground far-field test. The existing X-band AESA radar demonstrator was used to test the proposed algorithm. The proposed algorithm was applied to the radar processor software. The deceptive jamming signals generated using the commercial jamming signal generator. We performed the repeated ground far-field test with the test scenario. Test results show that the proposed counter deceptive jamming algorithm works in the real radar system.

프로펠러 단독성능해석 향상을 위한 고차패널법의 적용 (Application of High Order Panel Method for Improvement of Prediction of Marine Propeller Performance)

  • 김건도;이창섭
    • 대한조선학회논문집
    • /
    • 제42권2호
    • /
    • pp.113-123
    • /
    • 2005
  • A higher order panel method based on B-spline representation for both the geometry and the solution is developed for the analysis of steady flow around marine propellers. The self-influence functions due to the normal dipole and the source are desingularized through the quadratic transformation, and then shown to be evaluated using conventional numerical quadrature. By selecting a proper order for numerical quadrature, the accuracy of the present method can be increased to the machine limit. The far- and near-field influences are shown to be evaluated based on the same far-field approximation, but the near-field solution requires subdividing the panels into smaller subpanels continuously, which can be effectively implemented due to the B-spline representation of the geometry. A null pressure jump Kutta condition at the trailing edge is found to be effective in stabilizing the solution process and in predicting the correct solution. Numerical experiments indicate that the present method is robust and predicts the pressure distribution on the blade surface, including very close to the tip and trailing edge regions, with far fewer panels than existing low order panel methods.

Seismic behavior of isolated bridges with additional damping under far-field and near fault ground motion

  • Losanno, Daniele;Hadad, Houman A.;Serino, Giorgio
    • Earthquakes and Structures
    • /
    • 제13권2호
    • /
    • pp.119-130
    • /
    • 2017
  • This paper presents a numerical investigation on the seismic behavior of isolated bridges with supplemental viscous damping. Usually very large displacements make seismic isolation an unfeasible solution due to boundary conditions, especially in case of existing bridges or high risk seismic regions. First, a suggested optimal design procedure is introduced, then seismic performance of three real bridges with different isolation systems and damping levels is investigated. Each bridge is studied in four different configurations: simply supported (SSB), isolated with 10% damping (IB), isolated with 30% damping (LRB) and isolated with optimal supplemental damping ratio (IDB). Two of the case studies are investigated under spectrum compatible far-field ground motions, while the third one is subjected to near-fault strong motions. With respect to different design strategies proposed by other authors, results of the analysis demonstrated that an isolated bridge equipped with HDLRBs and a total equivalent damping ratio of 70% represents a very effective design solution. Thanks to confirmed effective performance in terms of base shear mitigation and displacement reduction under both far field and near fault ground motions, as well as for both simply supported and continuous bridges, the suggested control system provides robustness and reliability in terms of seismic performance also resulting cost effective.

CAVITY OF CREATION FOR COLD FUSION AND GENERATION OF HEAT

  • Oh, Hung-Kuk
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 1996년도 추계학술발표회 논문집
    • /
    • pp.3-12
    • /
    • 1996
  • Cold fusion technologies now are being developed very successfully. The $\pi$-far infrared rays are generated from three dimensional crystallizing $\pi$-bondings of oxygen atoms in water molecules. The growing cavity in water molecules make near resonance state and a vortex of infrared rays and attracts $\pi$-far infrared rays in the water. The cavity surrounded by a lot of $\pi$-far infrared rays has a very strong gravitational field. The $\pi$-far infrared rays are contracted into $\pi$-far infrared rays of half wave length and of one wave length. The $\pi$-far infrared rays of half wave length generate heat while $\pi$-far infrared rays of one wave length are contracted into $\pi$-gamma rays of one wave length. The contracted $\pi$-gamma rays of one wave length make nucleons and mesons, which is the creation and transmutation of matter by covalent bondings and three-dimensional crystallizing $\pi$-bondings into implosion bonding. Patterson power cell generates a very strong gravitational cavity because the electrolysized oxygen atoms make $\pi$-far infrared rays than in plain water.

  • PDF

THREE-DIMENSIONAL CRYSTALLIZING ${\pi}$-BONDING , ${\pi}$-FAR INFRARED RAYS AND NEW SPACE ENERGY RESOURCE

  • Oh, Hung-Kuk
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 1996년도 춘계학술발표회 초록집
    • /
    • pp.73-87
    • /
    • 1996
  • The outer-most electrons of metal atoms and the remining valence electrons of any molecular atoms make three dimensional crystallizing $\pi$-bondings. The electrons on the $\pi$-bonding orbital rotate clockwise or counter-clockwise and they then make electro-magnetic waves between atoms on the orbital because electron move between plus charged ions. The three dimensional crystallizing $\pi$-bonding orbitals are quantum-mechanically modeled by a cyclic Kronig-Penny Model and energy band structures are analyzed with their potential barrier thickness. The waves generated between plus charged ions are the particular $\pi$-far infrared rays, which have dual properties between material and electro-magnetic waves and can be measured not by modern electro-magnetic tester but biosensor such as finger's force tester. Because the $\pi$-rays can be modulated with electro-magnetic waves it can be applied for harmful electro-magnetic wave killers. Because the $\pi$-rays make new three dimensional crystallizing $\pi$-bonding orbitals in the material the food and drink can be transformed into a helpful physical constitutional property for human health. Distinction between crystalline and amorphous metals is possible because very strong crystalline $\pi$-bonding orbitals can not easily be transformed into another. The $\pi$-rays can also be applied for biofunctional diagnostics and therapy. Gravitational field is one of the electro-magnetic fields. And also magnetic field and gravitational force field make charge's movement. ($\times$ = q, : magnetic field, : force field, q: plus charge, : velocity field)

  • PDF

구면투영법을 이용한 수중표적의 근거리장 소나단면적 해석 (Near-field Sonar Cross Section Analysis of Underwater Target Using Spherical Projection Method)

  • 김국현;조대승
    • 대한조선학회논문집
    • /
    • 제45권6호
    • /
    • pp.695-702
    • /
    • 2008
  • In this paper, a new numerical method is proposed to analyze near-field sonar cross section of acoustically large-sized underwater targets such as submarines. A near-field problem is converted to a far-field problem using a spherical projection method with respect to the objective target. Then, sonar cross section is calculated with a physical optics well established in far-field acoustic wave scattering problems. The analysis results of a square flat plate compared with those obtained by other method show the accuracy of the proposed method. Moreover, it is noted that the sonar cross section is varied with respect to the targeting point as well as the range. Finally, numerical analysis results of real-like underwater target such as a submarine pressure hull are discussed.

2차원 유체- 구조물-지반 상호작용해석 전산프로그램 (A Computer Program for 2-D Fluid-Structure-Soil Interaction Analysis)

  • 김재민
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.427-434
    • /
    • 2000
  • This paper presents a computer program for a 2-D fluid-structure-soil interaction analysis. With this computer program the fluid can be modeled by a spurious free 4-node displacement-based fluid element which uses rotational penalty and mass projection technique in conjunction with the one point reduced integration scheme to remove the spurious zero energy modes. The structure and near field soil are discretized by the standard finite elements while the unbounded far field soil are discretized by the standard finite elements while the unbounded far field soil is represented by the frequency dependent dynamic infinite elements. Sine this method models directly the fluid-structure-soil system it can be applied to the dynamci analysis of 2-D liquid storage structure with complex geometry. For the purpose of verification dynamic analyses for tanks on a rigid foundation and on compliant embankment are carried out. Comparison of the present results with those by ANSYS program shows good agreement.

  • PDF

안테나 및 EMC/EMI 측정을 위한 다용도 전자파무반사실 구현

  • 권범;김주완
    • 한국전자파학회지:전자파기술
    • /
    • 제10권1호
    • /
    • pp.77-83
    • /
    • 1999
  • 전파무반사실을 구축하기 위해서는 많은 비용이 요구되므로 하나의 전자파무반사실을 여러가지 용도로 사용되는 것은, 공간적, 경제적으로 매우 효율적이다. 본 논문에서는 현재 SK텔레콤에서 운용중인 안테나 및 EMC/EMI측정을 위한 다용도 전자파무반사실에 대하여 설명하고 그 성능에 대한 측정결과를 제시한다. 이 전자파무반사실은 150 MHz에서 40 GHz까지의 주파수 범위까지 Far Field와 Near field에 대한 안테나 측정이 가능한 안테나 측정시스템과 측정환경을 보유하고 있으며, EMC/EMI 측정을 위한 ANSI C63.4dhk CISPR 16.1의 요구조건을 모두 만족하고 있다.

  • PDF