• Title/Summary/Keyword: Fan speed

Search Result 316, Processing Time 0.029 seconds

NUMERICAL STUDY FOR COOLING CAPACITY IMPROVEMENT OF ENGINE ROOM ENCLOSURE SYSTEM (엔진실 차폐 시스템의 냉각성능 개선을 위한 수치적 연구)

  • Bae, Y.S.;Yoo, G.J.;Choi, H.K.
    • Journal of computational fluids engineering
    • /
    • v.14 no.2
    • /
    • pp.39-45
    • /
    • 2009
  • In engine room, proper enclosure system is preferable for reducing noise level but the enclosure system in the engine room causes bad influence on cooling performance due to poor ventilation. Cooling efficiency of the enclosure system can be improved by varying fan speed and proper flow path for ventilation. In this study, numerical analysis is performed to assess cooling effect of the enclosure system using finite volume method. The RNG k-$\varepsilon$ model is adopted for turbulence model along with heat exchanger model and porous media model for heat exchanger analysis, and moving reference frame model for rotational fan. Verification result shows reasonable agreement with experimental data. Analysis results show direct effect of velocity and temperature distribution on cooling ability in the enclosure system. Enclosure system of case B shows high heat transfer coefficient and has the smallest area ratio of opened flow passages which is good for noise level reduction.

A Comparative Study of the Line Start Permanent Magnet, Skeleton Type Brushless DC, and Snail-earn Type Switched Reluctance Motor for Fans

  • Lee, Ji-Young;Lee, Geun-Ho;Hong, Jung-Pyo;Jin Hur
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.3
    • /
    • pp.122-126
    • /
    • 2004
  • The objective of this paper is to provide a comparison between the Line Start Permanent Magnet, Skeleton type Brushless DC, and the Snail-cam type Switched Reluctance Motor. These motors are compared under the same load characteristic as the cooling fan motor of a refrigerator. The comparison consists of speed, output power, efficiency, copper loss, and cost for three different motors. For the given application, the results provide an indication of the best machine suited with respect to performance and cost.

Numerical Analysis to Predict Air Flow Phenomena in a Road Tunnel (도로 터널내의 공기유동 양상을 예측하기 위한 수치해석)

  • Choi, In-Su;Park, Byung-Duck;Youn, Il-Ro
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.4
    • /
    • pp.313-320
    • /
    • 2002
  • A 2-dimensional $k-{\varepsilon}$ numerical model was developed to explore the effects of vehicle movement, jet fan and wind speed for the ventilation of road tunnels. To consider the temperature distribution in the tunnel, the energy equation was solved with a source term of the energy exhausted from vehicles. Although the tunnel ventilation can be made by the piston effect of vehicle movement, an additional ventilation is necessary when a head wind is existing. Jet fans may assist the air flow in the tunnel. However, more efficient ventilation system should be necessary, because the exhaust gas from vehicles flow along the road surface and it cannot be diffused in the longitudinal tunnel.

  • PDF

On-line Fault Detection and Diagnosis for Heat Exchanger of Variable Speed Refrigeration System Based on Current Information (전류정보를 이용한 가변속냉동시스템의 열교환기 실시간 고장 진단)

  • Lee, Dong-Gyu;Jeong, Seok-Kwon
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.88-94
    • /
    • 2007
  • This study deals with on-line fault detection and diagnosis for heat exchanger of variable speed refrigeration system. Conventional studies about fault of heat exchanger in refrigeration system have used temperature and pressure information. The temperature and pressure are able to be used valuably for faults detection of constant speed refrigeration system. However in case of variable speed refrigeration system, the temperature and pressure are no longer useful information for fault detection due to compensation effect of feedback controller. While current information is possible to detect faults of variable speed refrigeration system. The current information was detected in an inverter, it was used after transforming rms value. The faults of variable speed refrigeration system are divided into electrical faults and mechanical faults. We performed fault detection and diagnosis about heat exchanger among mechanical faults such as condenser fouling and evaporator fan fouling through some experiments.

  • PDF

Partial turbulence simulation and aerodynamic pressures validation for an open-jet testing facility

  • Fu, Tuan-Chun;Chowdhury, Arindam Gan;Bitsuamlak, Girma;Baheru, Thomas
    • Wind and Structures
    • /
    • v.19 no.1
    • /
    • pp.15-33
    • /
    • 2014
  • This paper describes partial turbulence simulation and validation of the aerodynamic pressures on building models for an open-jet small-scale 12-Fan Wall of Wind (WOW) facility against their counterparts in a boundary-layer wind tunnel. The wind characteristics pertained to the Atmospheric Boundary Layer (ABL) mean wind speed profile and turbulent fluctuations simulated in the facility. Both in the wind tunnel and the small-scale 12-Fan WOW these wind characteristics were produced by using spires and roughness elements. It is emphasized in the paper that proper spectral density parameterization is required to simulate turbulent fluctuations correctly. Partial turbulence considering only high frequency part of the turbulent fluctuations spectrum was simulated in the small-scale 12-Fan WOW. For the validation of aerodynamic pressures a series of tests were conducted in both wind tunnel and the small-scale 12-fan WOW facilities on low-rise buildings including two gable roof and two hip roof buildings with two different slopes. Testing was performed to investigate the mean and peak pressure coefficients at various locations on the roofs including near the corners, edges, ridge and hip lines. The pressure coefficients comparisons showed that open-jet testing facility flows with partial simulations of ABL spectrum are capable of inducing pressures on low-rise buildings that reasonably agree with their boundary-layer wind tunnel counterparts.

Speed Control of Induction Motor Drive for FCU Using TMS320LF2406 DSP controller (TMS320LF2406 DSP를 이용한 FCU용 유도 전동기 속도제어)

  • Choi Woo-Suk;Kim Lee-Hun;Park Kyu-Hyun;Won Chung-Yuen;Lee Sang-Suk;Choi Chang-Young
    • Proceedings of the KIPE Conference
    • /
    • 2001.12a
    • /
    • pp.3-6
    • /
    • 2001
  • This paper designs a drive for high efficiency of the 3-phase IM (induction motor) for FCU(Fan Coil Unit). The speed control system of 3-phase IM for FCU has been implemented by a TMS320LF2406 DSP chip. The DSP TMS320LF2406, which include the most peripheral circuit for control of the Industrial motor suitable for AC motor drive. This type of the controller can be obtained low cost and high reliance. The proposed drive system of the 3-phase IM for the FCU is verified by simulation. The results show the speed control characteristics of the control strategy Proposed for 3-Phase IM drive.

  • PDF

A study on the running characteristics of the single phase induction motor by S.C.R. (S.C.R.에 의한 단상유도전동기의 운전특성에 관해서)

  • Jong Swoo Won
    • 전기의세계
    • /
    • v.17 no.4
    • /
    • pp.7-12
    • /
    • 1968
  • In recent years the development of the SCR has made possible the control of the power system. It is one example that the speed control of the induction motor can be done by changing the frequency with the S.C.R. This paper is devoted primarily to a study of the running characteristics of the single phase induction motor through the experimental and theoretical methods when the speed of the motor is controlled by varying the conduction period in current with S.C.R. under the constant frequency. We conclude from the experiments that the adjustment of the phase angle in current is equivalent to the change of the supply voltage to the motor. Therefore, the speed control of the motor such as a fan duty motor is possibly by this methods.

  • PDF

Formation of a large-scale quasi-circular flare ribbon enclosing three-ribbon through two-step eruptive flares

  • Lim, Eun-Kyung;Yurchyshyn, Vasyl;Kumar, Pankaj;Cho, Kyuhyoun;Kim, Sujin;Cho, Kyung-Suk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.42.1-42.1
    • /
    • 2016
  • The formation process and the dynamical properties of a large-scale quasi-circular flare ribbon were investigated using the SDO AIA and HMI data along with data from RHESSI and SOT. Within one hour time interval, two subsequent M-class flares were detected from the NOAA 12371 that had a ${\beta}{\gamma}{\delta}$ configuration with one bipolar sunspot group in the east and one unipolar spot in the west embedded in a decayed magnetic field. Earlier M2.0 flare was associated with a coronal loop eruption, and a two-ribbon structure formed within the bipolar sunspot group. On the other hand, the later M2.6 flare was associated with a halo CME, and a quasi-circular ribbon developed encircling the full active region. The observed quasi-circular ribbon was strikingly large in size spanning 650" in north-south and 500" in east-west direction. It showed the well-known sequential brightening in the clockwise direction during the decay phase of the M2.6 flare at the estimated speed of 160.7 km s-1. The quasi-circular ribbon also showed the radial expansion, especially in the southern part. Interestingly, at the time of the later M2.6 flare, the third flare ribbon parallel to the early two-ribbon structure also developed near the unipolar sunspot, then showed a typical separation in pair with the eastern most ribbon of the early two ribbons. The potential field reconstruction based on the PFSS model showed a fan shaped magnetic configuration including fan-like field lines stemming from the unipolar spot and fanning out toward the background decayed field. This large-scale fan-like field overarched full active region, and the footpoints of fan-like field lines were co-spatial with the observed quasi-circular ribbon. From the NLFF magnetic field reconstruction, we confirmed the existence of a twisted flux rope structure in the bipolar spot group before the first M2.0 flare. Hard X-ray emission signatures were detected at the site of twisted flux rope during the pre-flare phase of the M2.0 flare. Based on the analysis of both two-ribbon structure and quasi-circular ribbon, we suggest that a tether-cutting reconnection between sheared arcade overarching the twisted flux rope embedded in a fan-like magnetic field may have triggered the first M2.0 flare, then secondary M2.6 flare was introduced by the fan-spine reconnection because of the interaction between the expanding field and the nearby quasi-null and formed the observed large-scale quasi-circular flare ribbon.

  • PDF

Sensorless Control Algorithm of a Surface Mounted PM Synchronous Motor Under Naturally Rotating by Load (외부부하에 의해 회전중인 표면부착형 영구자석동기전동기의 센서리스 제어 알고리즘)

  • Lee, Han-Sol;Cho, Kwan-Yuhl;Kim, Hag-Wone
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.1
    • /
    • pp.16-23
    • /
    • 2018
  • PM synchronous motor may be rotated to an arbitrary direction and speed by outside wind under natural condition in cases where the fan is applied outside, such as in vehicle radiators and outdoor air-conditioners. Sensorless controls that cannot detect rotor position requires additional sensorless control algorithm because a rotor is rotated by an external load. In this study, the sensorless control of a PM synchronous motor under naturally rotating condition is proposed. The natural rotation conditions are classified as forward high-speed rotation, reverse high-speed rotation, and low-speed rotation. Experiment results verify the performance of the sensorless control, including the rotor speed and position detection at natural rotation mode and switch to the closed-loop sensorless control.

Effects of Spinning Conditions on Properties of Polyester Yarn Prepared using an Ultra-high-speed Melt Spinning Technique Equipped with a Steam Chamber

  • Ho, Yo-Seung;Kim, Hak-Yong;Jin, Fan-Long;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3252-3258
    • /
    • 2010
  • In this study, the effects of the various parameters of spinning and drawing processes on the properties of polyester full drawn yarn (FDY) prepared by steam processing during high-speed spinning were investigated using several techniques. The wet shrinkage ratio of the FDY was able to be manipulated by controlling the temperature and draw ratio. The FDY made using the steam high speed spinning technique exhibited identical properties (such as tenacity, elongation, and wet shrinkage ratio) to that of regular FDY, made using the spin-draw process. FDY prepared using the steam process during high-speed spinning showed excellent dyeability. The dye pick-up of the polyester yarn spun at high-speed spinning was found to be improved when dyed under an atmospheric pressure of $100^{\circ}C$. This result was the same as regular FDY dyed under a high pressure of $130^{\circ}C$.