• 제목/요약/키워드: Fan parameter

검색결과 107건 처리시간 0.027초

보일러 풍압 제어 계통의 모델링 (MODELING OF PRESSURE CONTROL SYSTEM OF BOILER)

  • 박민호;목형수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1987년도 정기총회 및 창립40주년기념 학술대회 학회본부
    • /
    • pp.362-366
    • /
    • 1987
  • The amount of inflowing Air into the boiler has controlled by manipulating the opening of valve, damper and vane, as fan operated by induction motor operats at constant speed, but these control methods are not efficient. Thus VVVf(Variable Voltage Variable Frequency) control of fan has selected to improve efficiency and to acquire power savings. Control system of Air Flow is affected by nonlinearity caused by load variation, vane opening, etc. The analysis of control parameter causing nonlinearity is needed to acquire optimal control and excellent transient response. This paper provides modeling of boiler with various load conditions and vane opening, and analysis of this system.

  • PDF

고공 강하용 수직풍동의 개념설계에 관한 연구 (A Study on the Concept Design of Vertical Wind Tunnel for Skydiver)

  • 조환기
    • 한국항공운항학회지
    • /
    • 제26권2호
    • /
    • pp.83-90
    • /
    • 2018
  • This paper describes a case study on the design factor analysis of vertical wind tunnel for skydiver's training or experiencing of paradropping exercise in the air. The case study of vertical wind tunnel design is to provide the knowledges on effects of parameter's variation when it is applied to overall or partial duct of tunnel circuit. The analysis of design parameters based on pressure loss are produced one by one through the tunnel components from the flight chamber because the wind tunnel must satisfy the requirement of flight chamber such as flow speed, quality and quantity. Results shows the various effects of parameter variation with pressure loss in the wind tunnel circuit. Pressure loss should be based on the determination of fan and power system which can be selected from market or new design.

온라인 서명 검증을 위한 SVM의 커널 함수와 결정 계수 선택 (Selection of Kernels and its Parameters in Applying SVM to ASV)

  • 판윈허;우영운;김성훈
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2015년도 추계학술대회
    • /
    • pp.1045-1046
    • /
    • 2015
  • When using the Support Vector Machine in the online signature verification, SVM kernel function should be chosen to use non-linear SVM and the constant parameters in the kernel functions should be adjusted to appropriate values to reduce the error rate of signature verification. Non-linear SVM which is built on a strong mathematical basis shows better performance of classification with the higher discrimination power. However, choosing the kernel function and adjusting constant parameter values depend on the heuristics of the problem domain. In the signature verification, this paper deals with the problems of selecting the correct kernel function and constant parameters' values, and shows the kernel function and coefficient parameter's values with the minimum error rate. As a result of this research, we expect the average error rate to be less than 1%.

  • PDF

On bending, buckling and vibration of graphene nanosheets based on the nonlocal theory

  • Liu, Jinjian;Chen, Ling;Xie, Feng;Fan, Xueliang;Li, Cheng
    • Smart Structures and Systems
    • /
    • 제17권2호
    • /
    • pp.257-274
    • /
    • 2016
  • The nonlocal static bending, buckling, free and forced vibrations of graphene nanosheets are examined based on the Kirchhoff plate theory and Taylor expansion approach. The nonlocal nanoplate model incorporates the length scale parameter which can capture the small scale effect. The governing equations are derived using Hamilton's principle and the Navier-type solution is developed for simply-supported graphene nanosheets. The analytical results are proposed for deflection, natural frequency, amplitude of forced vibration and buckling load. Moreover, the effects of nonlocal parameter, half wave number and three-dimensional sizes on the static, dynamic and stability responses of the graphene nanosheets are discussed. Some illustrative examples are also addressed to verify the present model, methodology and solution. The results show that the new nanoplate model produces larger deflection, smaller circular frequencies, amplitude and buckling load compared with the classical model.

Nano-medicine effectiveness in pediatric patients: An artificial intelligence investigation

  • Shaona Wang;Fan Yang
    • Advances in nano research
    • /
    • 제15권2호
    • /
    • pp.129-139
    • /
    • 2023
  • Emerge of nanotechnology has affected many aspects of our life and also triggers research studies in many fields. Nano-medicine are proven to be effective in encountering diseases. In the present study, aspects of the applications and effectiveness of nano-medicine in pediatrics patients are studied. In this regard, using experimental data of previous published researches, combination and dose of nano-medicines are optimized using response surface method and neural-fuzzy inference network. The input parameters of the selected multiple nano-medicines are dose and type and the output is the effectiveness of the combinations using IC50 parameter. A detailed parameter study is presented to observe effects of each inputs on the IC50. The results indicate that personalized scaling of nano-medicine is required in therapy of pediatric diseases such as cancers.

CFD 시뮬레이션을 이용한 냉장컨테이너의 열유동 설계 (Design of Heat and Fluid Flow in Cold Container Using CFD Simulation)

  • 윤홍선;권진경;정훈;이현동;김영근
    • Journal of Biosystems Engineering
    • /
    • 제33권6호
    • /
    • pp.396-403
    • /
    • 2008
  • Because thermal non-uniformity of transported agricultural products is mainly affected by cooling air flow pattern in the cold transport equipment, the analysis and control of flowfield is key to optimization of cold transport equipment. The objectives of this study were to estimate the effects of geometric and operating parameters of cold container on the air flow and heat transfer, and find the optimum design parameters for the low temperature level and its uniformity in given cold container with CFD simulations. Existences of ducts, gaps between pallets and geometries of exit as geometric parameters and fan blowing velocity as operating parameter were investigated. CFD simulations were carried out with the FLUENT 6.2 code. The result showed that optimum design condition was bulk loading with no duct, wall exit and 8.0 m/s of fan blowing velocity.

수치해석에 의한 고속팬용 밀폐구조형 BLDC모터의 열신뢰성 분석 (Thermal Reliability Analysis of BLDC Motor in a High Speed Axial Fan by Numerical Method)

  • 문선애;이재헌
    • 설비공학논문집
    • /
    • 제22권3호
    • /
    • pp.130-138
    • /
    • 2010
  • The thermal reliability of the closed-type BLDC motor for the high speed axial fans is analyzed by a numerical method in this paper. Since the module and the motor part are combined in a closed case, the heat generated from a rotor in the motor and the electronic components in the PCB module can not be effectively removed to the outside. Therefore the module will easily fail by high temperature. The accelerated-life testing was accomplished to formulate the life equation and numerical method is used to predict the inside temperature of the PCB module, which is one of the life equation parameter according to the environment. When the environment temperature of BLDC motor is 21, 35 and 50 $^{\circ}C$, the temperature in the PCB space is predicted as 73.4, 87.5 and 102.4 $^{\circ}C$. Then the life time with the temperature are calculated as 2,239, 863 and 328 hours.

압축식 제습기에 대한 수치해석 연구 : (II) 열전달 (Numerical Analysis of A Compressor Type of Dehumidifier : (II) Heat Transfer)

  • ;;김규목;정재동
    • 설비공학논문집
    • /
    • 제30권2호
    • /
    • pp.92-99
    • /
    • 2018
  • A numerical analysis of a compressor dehumidifier has been conducted focusing on the air side heat transfer, which is a part of a series research on the dehumidifier. The moving reference frame was applied to the fan modeling, and the porous model was used for the evaporator and condenser modeling. Curve fitting obtained the inertial and viscous resistances parameters to the results of the physical model of the unit cell with actual shape of a fin tube. The porous model was validated within a reasonable computation time for the range of practical inlet velocity of a dehumidifier. A parametric study has been conducted for fin number, fan speed (i.e., air flow rate), and evaporator/condenser tube arrangement. ANOVA analysis showed the dependency of each parameter on the velocity and temperature uniformity, which are desirable for high performance of the dehumidifier.

Aspect-Ratio Effects and Unsteady Pressure Measurements inside a Cross-Flow Impeller

  • Hirata, Katsuya;Onishi, Yusuke;Nagasaka, Shigeya;Matsumoto, Ryo;Funaki, Jiro
    • International Journal of Fluid Machinery and Systems
    • /
    • 제5권3호
    • /
    • pp.117-125
    • /
    • 2012
  • In the present experimental study, the authors try to clarify the characteristics of the flow around and inside a cross-flow impeller in a typical geometry, over a wide parameter range of an aspect ratio $L/D_2$. In order to eliminate the complicated casing factors, the impeller rotates in open space without any casings. As a result, by using hot wire anemometer measurements and by conventional flow visualisations with a particle image velocimetry technique, the authors show that both the outflow rate and the maximum vorticity attain the maximum for $L/D_2$ = 0.6. In order to investigate the aspect-ratio effect, we further reveal minute fluctuating pressures on an impeller end wall for a singular $L/D_2$ = 0.6. Especially in these pressure measurements, the eccentric vortex is prevented to revolute by the insertion of a tongue, in order to consider the spatial structure of flow more precisely.

대형공간환기용 축류팬에 사용되는 밀폐형 모터의 열신뢰성 분석 (Thermal Reliability Analysis of a Closed Type Motor in an Axial Fan for the Large Space Ventilation)

  • 이태구;허진혁;문선애;유호선;문승재;이재헌
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.494-499
    • /
    • 2007
  • The thermal reliability of the closed-type BLDC motor for the high speed axial fans is analyzed by a numerical method in this dissertation. Since the module and the motor part are combined in a closed case, the heat generated from a rotor in the motor and the electronic components in the PCB module can not be effectively removed to the outside. Therefore the module will easily fail by high temperature. The accelerated-life testing was accomplished to formulate the life equation and numerical method is used to predict the inside temperature of the PCB module, which is one of the life equation parameter according to the environment. The experiment for measuring the surface heat flux of the electronic components is carried out to apply the boundary condition of numerical study. When the environment temperature of BLDC motor is 21, 35 and $50^{\circ}C$, the temperature in the PCB space is predicted as 73.4, 87.5 and $102.4^{\circ}C$. Then the life time with the temperature are calculated as 2,239, 863 and 328.

  • PDF