• 제목/요약/키워드: Fan noise

검색결과 477건 처리시간 0.024초

자동차용 냉각홴의 설계와 시스템 개선을 통한 저소음화 연구 (Design of Automotive Engine Cooling Fan and Study on Noise Reduction through Modification of System)

  • 김병주;강상규;김규영;이재영;이덕호;신동수
    • 한국소음진동공학회논문집
    • /
    • 제14권11호
    • /
    • pp.1107-1114
    • /
    • 2004
  • Axial fans are widely used for automotive engine cooling device due to their ability to produce high flow rate to keep engine cool. At the same time, the noise generated by these fans causes one of the most serious problems. Especially, engine cooling fan noise in idle condition of a car is noticeable. Therefore. the high efficient and low-noise fan is seriously needed. When a new fan system is designed, system resistance and non-uniform inflow are the key factors to get the high performance and low noise fan system. In this study, aerodynamic and acoustic calculations are carried out on the automotive cooling fan and system. Effects of various design parameters are studied through the free wake analysis and experiments. Better performance and noise characteristic are obtained for the new design fan using the methodology. Furthermore through the modification of the fan system geometry parameters, the fan system produce more flow rate and become less noisy.

축류형 홴 성능 및 소음에 영향을 미치는 설계변수 분석 (Design Parameter Analysis on the Performance and Noise of Axial Fan)

  • 김기황;이승배;주재만
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 I
    • /
    • pp.275-281
    • /
    • 2001
  • While basic input parameters for the performance and noise of axial fan are flow rate, pressure rise, rotating speed, and fan diameter, the geometric parameters of blade are sweep angle, solidity, and camber angle. The sweep angle does not affect fan performance much, but on fan noise significantly. Solidity and camber angle are very critical design parameters acting on the fan performance directly. The solidity and camber angle are closely related, therefore they have to be carefully determined for the low-noise and high-performance fan. In This paper, different design points are selceted and also geometric parameters are deliberately changed for the comparison of fan noise. As a result, at the same performance, the input rotational speed affects radiated noise more significantly than others. When solidity and camber angle are increased more than those by iDesignFan/sup TM/ program, more noise is experienced. The blade sweep method and blade numbers at same solidity are observed to results in different levels of performance and noise.

  • PDF

홴 설계 및 소음 해석 소프트웨어 (Design and Noise Analysis Software of Fans)

  • 전완호;백승조;김창준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 I
    • /
    • pp.270-274
    • /
    • 2001
  • Fans are widely used in household electrical appliances due to their easy usage and high performance for cooling capacity. However, the noise generated by these fans causes one of serious problems. LG electronics makes the intranet software for design and analysis of fan. Axial, sirocco and centrifugal fan can be designed and analyzed by using the IFD(Intranet Based Fans Design) software. In order to calculate the aeroacoustic noise of a fan, the numerical method, which can calculate the acoustic pressure at the blade passing frequency and its higher harmonic frequencies, has been developed. To calculate the unsteady resultant force of the blade, vortex method is used. This paper shows the overview of the software and validates the accuracy of predicted noise of fan.

  • PDF

냉장고용 저소음 신형상홴의 최적 형상에 관한 연구 (Study on the Optimal Shape of Low Noise, New Concept Fan for Refrigerator)

  • 정용규;김창준;백승조;전완호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.645-650
    • /
    • 2002
  • In this paper, new concept, low noise axial fan was developed. The fan was designed to operate at high-pressure condition inside the refrigerator. This fan - we call it Alpha fan - has small turbo blades at trailing edge of axial fan. These turbo blades make alpha fan operate at high pressure and low noise condition. In order to find out the optimal value of design parameters, 6-sigma method was used. The design parameters are ratio between inner and outer diameter, Height, Install angle and Install position of turbo blade. Optimal value of turbo blade was found out and the noise generated from this fan is reduced about 3dB(A).

  • PDF

비소음 측정을 이용한 저소음 축류홴 설계 (Design of Low Noise Axial Flow Fan Using Specific Sound Presssure Level)

  • 김창준;이동익
    • 소음진동
    • /
    • 제10권5호
    • /
    • pp.873-879
    • /
    • 2000
  • Experimental investigation was conducted to study the effects of pitch angle maximum camber on the performance and noise of an axial-flow fan used in outdoor-unit of air -conditioner. For this study the axial-flow fan whose pitch angle can be varied was made and the Specific sound Pressure Level and other coefficients were measured using the anechoic fan tester. It is found that pitch angle affects more severly than the maximum camber on the fan performance. On the while the maximum camber affects much on the specific sound power level. Present results show that it is important to choose the optimum pitch angle and maximum camber to design the high-performance and low-noise axial-flow fan and specific noise measured in the anechoic fan tester can be sued effectively for the design of low-noise fan.

  • PDF

설계 파라미터 변경에 의한 고속 버스용 엔진 냉각 홴의 저소음화 연구 (A Study on the Noise Reduction of the Engine Cooing Fan of a Express Bus by Modification of Design Parameters)

  • 이유엽;조용구;이충휘;오재응
    • 한국소음진동공학회논문집
    • /
    • 제13권4호
    • /
    • pp.258-265
    • /
    • 2003
  • This paper suggests the noise reduction method of the engine cooling fan. The fan noise contribution to the OASPL of engine room was estimated and the noise source was identified for the rotating fan by sound intensity method. And the program for Predicting the noise spectrum of axial flow fan was also developed. The radiated acoustic pressure is expressed in terms of discrete frequency noise Peaks at BPF and its harmonics and the line spectrum at the broad band by the proposed noise generation mechanisms. In this Paper, it Is shown that the comparison of the measured and calculated noise spectra of fan validates the noise predicting program. And this paper presents the characteristics of the fan noise in order to modify the design parameters. Accordingly, the design parameters were determined for the noise reduction of the fan.

무향팬테스터를 이용한 냉장고용 팬 성능/소음 측정 (Measuring performance and SPL of refrigerator fan using anechoic fan tester)

  • 정정교;이준화;주재만;강정훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.253-256
    • /
    • 2004
  • Acoustical noise at low frequency range (below 500Hz) of refrigerator result from fans which are inside of the refrigerator. In generally to evaluate and apply to refrigerator it is recommended that acoustical noise and fluidic performance of the fan were measured simultaneously. To do that twin-room type anechoic wind tunnel was needed. But constructing twin room type anechoic wind tunnel was very expensive and estimation of small refrigerator fan performance was not easy. So in this paper we composed anechoic fan tester. A successful noise and performance measurement was performed using the anechoic fan tester. Existing 22 kinds of refrigerator fan were investigated and mapped into one database. Refrigerator duct pressure resistance were measured and reflected into the fan database to find out appropriate fan. Through the application of fan database, the refrigerator became less noise compared to current one and these data shows what is the best way to reduce fan noise.

  • PDF

설계파라미터 변경에 의한 고속버스용 엔진 냉각 팬의 저소음화 연구 (A Study on the Noise Reduction of the Engine Cooing Fan of an Express Bus by Change of Design Parameters)

  • Jae-Eung OH;You-Yub LEE;Hyun-Jin Sim;Mon-Kab Joe
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.333.1-333
    • /
    • 2002
  • This paper suggests the noise reduction method of the engine cooling fan. It was estimated the fannoise contribution at the engine room and identified the noise source at the rotating fan by sound intensity method, first. And it has been developed the program for predicting the noise spectrum of axial flow fan. The radiated acoustic pressure is expressed the discrete frequency noise peaks at BPF and its harmonics and the line spectrum at the broad band by the noise generation mechanisms. In this paper it is shown that the comparison of the measuted and calculaed noise spectra of fn for the validation of the noise predictiong program. And this paper presents the characteristics of a fan noise due to modify the design parameters. Accordingly, it was obtained the design parameter values for noise reduction of fan.

  • PDF

저소음 고효율 시로코 홴 개발에 관한 연구 (A study on Low-Noise and High-Efficiency Sirocco Fan Development)

  • 박광진;이상환;손병진
    • 한국유체기계학회 논문집
    • /
    • 제2권2호
    • /
    • pp.46-56
    • /
    • 1999
  • This study is on the performance prediction and design of a sirocco fan. Slip coefficient is very important factor for the performance analysis of a centrifugal-type fan. Because generally used slip coefficient equations of backward curved centrifugal fan are not appropriate for forward curved sirocco fan, in this study a proper slip coefficient equation for a sirocco fan is suggested. Using this equation performance prediction program for sirocco fan is composed of and also included the total noise prediction that include the turbulent noise at the fan inlet and boundary layer noise. A comparison between the values obtained from performance prediction program and experimental values shows that the program predicts the sirocco fan performance in a practical rate.

  • PDF

저소음 고효율 시로코 팬 개발에 관한 연구 (A study on low-noise and high-efficiency sirocco fan development)

  • 박광진;이상환;손병진
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1998년도 강연회 및 연구개발 발표회 논문집
    • /
    • pp.63-72
    • /
    • 1998
  • This study Is on the performance prediction and design of sirocco fan. Slip coefficient is very important factor for the performance analysis of centrifugal-type fan. Because generally used slip coefficient equations of backward curved centrifugal fan are not appropriate for forward curved sirocco fan, in this study a proper slip coefficient equation for sirocco fan is suggested. Using this equation performance prediction program for sirocco fan is composed and also included the total noise prediction that include turbulent noise at the fan Inlet and boundary layer noise. A comparison between the values obtained from performance prediction program and experimental values shows that the program predicts the sirocco fan performance in a practical rate.

  • PDF