• Title/Summary/Keyword: Fan module

Search Result 65, Processing Time 0.021 seconds

Cooling Performance of Thermoelectric Module with Air-Cooled Heat Exchanger Fins (공랭식 열교환핀이 부착된 열전모듈의 냉각 성능에 관한 연구)

  • Shin, Jae-Hoon;Han, Hun-Sik;Kim, Yun-Ho;Kim, Seo-Young;Hyun, Jae-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.3
    • /
    • pp.171-179
    • /
    • 2010
  • Thermal performance of louver fin and plate fin in a thermoelectric cooling system with a duct-flow type fan arrangement is analytically evaluated. The thermoelectric cooling system consists of a thermoelectric module and two heat exchanger fins. The analytic results show that the optimized louver fin has lower thermal resistance than plate fin. The COP and heat absorbed rate of the thermoelectric cooling system with optimized louver fins are 10.3% and 5.8% higher than optimized plate fins, respectively.

The Performance Evaluation Study of PV-Solarwall Unit Module Solar Thermal-Electric Energy (태양에너지를 이용한 열-전기 동시생산을 위한 PV-Solarwall 단위모듈 성능평가 연구)

  • Kim, Yong-Hwan;Cho, Yil-Sik;Lee, Euy-Joon;Hyun, Myung-Taek;Kang, Eun-Chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.3
    • /
    • pp.69-75
    • /
    • 2005
  • The PV-Solarwall system has been introduced as a promising alternative to harness solar energy for both heating applications and electricity generation simultaneously. The system comprises a PV solar panel(for electricity generation). In addition, the solarwall incorporates a fan strategically located behind the PV panel to bring the warm and fresh air from the solarwall into the room. Because of its location and convective cooling principle, the fan also serves to reduce the operating temperature of the PV panel thereby increasing its efficiency. So this PV-Solarwall system holds much promise for saving heating and electricity costs compared with a PV system without solarwall. In particular, by controlling the tilt angle of the entire PV-Solarwall system between $0^{\circ}$(horizontal) and $90^{\circ}$(vertical), the performance of the system can be further evaluated. It is expected that the range of tilt angle PV-Solarwall between $40^{\circ}$ and $50^{\circ}$ will improve the output of the system.

A Study on the Development of the Console with LCD Panel for Exterior Advertizing (LCD 패널을 탑재한 옥외 광고용 콘솔 개발에 관한 연구)

  • Choi, Kab-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.1
    • /
    • pp.13-20
    • /
    • 2010
  • The development of the console for exterior advertizing LCD Panel(LCD Console) is the purpose of this study with regard to importance of display industry. In this study, the most important point is to develop the cooling system for LCD Console. It is developed by using systematic application techniques and statistical tests and analysis to integrate commercial components, cooling fan, heat sink, thermo electronic modules etc, of it. This study, at first, shows design/manufacturing process of the cooling system and the setting process of control factors to control through experimentation. Next, after constructing the complete console, 46 inch LCD Panel and the cooling system are built in, the performance test of it is shown through experimentation.

Fabrication of 365 nm Wavelength High Transmittance Silicone Resin TIR Lens and High Directivity Light Source Module for Exposure System (365 nm 파장대역 고투과율 실리콘 수지 TIR 렌즈 및 고지향성 노광기 광원모듈 제작)

  • Sung, Jun Ho;Yu, Soon Jae;Anil, Kawan;Jung, Mee Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.4
    • /
    • pp.267-271
    • /
    • 2018
  • A high directivity TIR (total internal reflection) lens in the UV-A region was designed using a silicone resin, and a UV light source module with a maximum irradiation density of $150mW/cm^2$ was fabricated. The beam angle of the TIR lens was designed to be $8.04^{\circ}$ and the maximum diameter of the TIR lens was Ø13.5. A silicone resin having a UV transmittance of 93% and a refractive index of 1.4 at a wavelength of 365 nm was used, and the lens was manufactured using an aluminum mold, from which silicone could be easily released. The module was fabricated in a metal printed circuit board of COB (chip on board) type using a $0.75{\times}0.75mm^2$ UV chip. A jig was used to adjust the focal length between lens and chip and to fix the position of the lens. The optical characteristics such as illumination distributions of the lens and module were designed using 'LightTools' optical simulation software. The heat dissipation system was designed to use a forced-air cooling method using a heat-sink and fan.

The Performance Assessment Study of Solar Energy Cogeneration panel for Building Integrated System (건물통합을 위한 태양에너지 cogeneration panel 특성 분석 연구)

  • Kim, Yong-Hwan;Kang, Eun-Chul;Hyun, Myung-Taek;Lee, Euy-Joon
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.2
    • /
    • pp.35-42
    • /
    • 2006
  • Solar Thermal-Electric Integrated system can be used to generate heat and electricity simultaneously and can improve indoor all qualify. So, it can save heating and electricity cost as it operates at relatively lower temperatures. In this study, one pv module was fixed on a normal wall and a pv module was mounted on a solarwall. And a ventilation fan in the solar energy cogeneration panel was operated from 12:00 to 17:00 hours. Experimental results are recorded and anaysized. The comparison of results show that the temperature of PV on solar energy cogeneration panel was decreased by $7{\sim}9^{\circ}C$ and the electrical output was improved by $2{\sim}3W$ compared with a PV system without solarwall.

Effect of geometrical parameters of reentry capsule over flowfield at high speed flow

  • Mehta, R.C.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.4
    • /
    • pp.487-501
    • /
    • 2017
  • The main purpose of the paper is to analyze effect of geometrical parameters of the reentry capsules such as radius of the spherical cap, shoulder radius, back shell inclination angle and overall length on the flow field characteristics. The numerical simulation with viscous flow past ARD (Atmospheric Reentry Demonstrator), Soyuz (Russian) and OREX (Orbital Reentry EXperimental) reentry capsules for freestream Mach numbers range of 2.0-5.0 is carried out by solving time-dependent, axisymmetric, compressible laminar Navier-Stokes equations. These reentry capsules appear as bell, head light and saucer in shape. The flow field features around the reentry capsules such as bow shock wave, sonic line, expansion fan and recirculating flow region are well captured by the present numerical simulations. A low pressure is observed immediately downstream of the base region of the capsule which can be attributed to fill-up in the growing space between the shock wave and the reentry module. The back shell angle and the radius of the shoulder over the capsule are having a significant effect on the wall pressure distribution. The effects of geometrical parameters of the reentry capsules will useful input for the calculation of ballistic coefficient of the reentry module.

High-Frequency Modeling and Optimization of E/O Response and Reflection Characteristics of 40 Gb/s EML Module for Optical Transmitters

  • Xu, Chengzhi;Xu, Y.Z.;Zhao, Yanli;Lu, Kunzhong;Liu, Weihua;Fan, Shibing;Zou, Hui;Liu, Wen
    • ETRI Journal
    • /
    • v.34 no.3
    • /
    • pp.361-368
    • /
    • 2012
  • A complete high-frequency small-signal circuit model of a 40 Gb/s butterfly electroabsorption modulator integrated laser module is presented for the first time to analyze and optimize its electro-optic (E/O) response and reflection characteristics. An agreement between measured and simulated results demonstrates the accuracy and validity of the procedures. By optimizing the bonding wire length and the impedance of the coplanar waveguide transmission lines, the E/O response increases approximately 5% to 15% from 20 GHz to 33 GHz, while the signal injection efficiency increases from approximately 15% to 25% over 18 GHz to 35 GHz.

Performance Evaluation Study of Solarwall-Photovoltaic Module to Generate Solar Electric Power (SWPV 태양 열-전기 복합생산 모듈 성능평가 연구)

  • Naveed Ahmed T;Kang E. C.;Lee E. J.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.397-402
    • /
    • 2005
  • Photovoltaic (PV) module can generate electricity using sunlight without causing any environmental degradation. Due to higher fossil fuel prices and environmental awareness, PV applications are becoming more popular as clean source of electricity generation. PV output is sensitive to the operating temperature and can be drastically affected in Building Integrated PV (BIPV) systems. PV Solarwall (SWPV) combination and PV systems have been evaluated in this study for improvement in electrical output and system costs. PV modules under forced ventilation. A 75W polycrystalline silicon PV module was fixed on SW in front of the ventilation fan as it was indicated to be the coolest position on the SW in phoenix simulations. The effectiveness of cooling by means of the forced ventilating air stream has been studied experimentally. The results indicate that there appears to be significant difference in temperature as well as electricity output comparing the SWPV and BIPV options. Electrical output power recovered is about $4\%$ during the typical day of the month of February. RETScreen(R) analysis of a 3kW PV system hypothetically located at Taegu has shown that with typical temperature reduction of $15^{{\circ}C$, it is possible to reduce the simple payback periods by one year. The work described in this paper may be viewed as an appraisal of a SWPV system based on its improved electrical and financial performances due to its ability to operate at relatively lower temperatures.

  • PDF

A Review on Smart Two Wheeler Helmet with Safety System Using Internet of Things

  • Ilanchezhian, P;Shanmugaraja, P;Thangaraj, K;Aldo Stalin, JL;Vasanthi, S
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.11-16
    • /
    • 2021
  • At the present time, the number of accidents has enlarged speedily and in country like India per day there are about 204 accidents occurred. Accidents of two-wheeler compose a foremost segment of every accident and it can be true for the reason that two-wheelers like bikes not able to produce as many as security measurements normally incorporated in cars, truks and bus etc. General main rootcost of the two-wheeler accidents happen only when people community not remember to wearing a device helmet and during the driving time feels like sleep condition, alcohol disbursement, many of the drivers doesn't know heavy vehicles like Loory and buses approaching into very closer to their two wheelers, contravention of two wheelers in traffic rules and regulations. Let's overcome the above situations; our important objective is to develop an intelligent system device that can successfully facilitate in avoidance of every kind of problems. Suppose any of the above stated situations occurs, at that moment how system device identify and represents the commanders and community, and finally the stated situation be able to taken care of straight away without any further delay. A smart intelligent helmet system is a defending head covering used by rider for making bike riding safer than earlier. This is finished by incorporating sophisticated features like detecting the usage of helmet by the rider, connected Bluetooth module in helmet. In order to maintain the temperature inside the helmet device we need to include CPU fan module inside the device. RF based helmet prevents road accidents and identify whether people community is not using a component helmet or used. Main responsibility of the system is to detect accidents by vibration sensors, accelerometers and also with the help of modules global positioning system and global system for mobile commnicaiton module. A wireless communication device used to discover the accident area site location and likewise notifying the two-wheeler drived people's relatives and short message text information passed to the positioned hospitals.

A Study on Enhancement of Thermoelectric Cooling System Performance by Piezoelectric Actuator (압전 액츄에이터를 이용한 열전냉각 시스템 성능 향상에 관한 연구)

  • Yang, Ho-Dong;Yoon, Hee-Sung;Oh, Yool-Kwon
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.6
    • /
    • pp.13-19
    • /
    • 2009
  • The thermoelectric cooling system consisted of the thermoelectric module, a heat sink and a cooling fan, respectively. Also, the piezoelectric actuator was applied to improve the performance of thermoelectric cooling system and investigate the heat transfer phenomenon. The temperature distribution of test section was measured to investigate cooling characteristics of thermoelectric cooling system. The flow phenomenon of test section was visualized using visualization device. When the piezoelectric actuator was applied to the heat transfer process of thermoelectric cooling system, acoustic streaming was occurred in test section. The acoustic streaming was occurred forced convection flow, and was regularly formed the temperature distribution in test section. The results clearly show that the acoustic streaming is one of the prime effects to enhance the convection heat transfer and can enhance the performance of thermoelectric cooling system.