• Title/Summary/Keyword: Fan flow performance

검색결과 420건 처리시간 0.03초

도로터널 화재 시 집중배기방식의 배기포트 통과풍속이 배연성능에 미치는 영향에 관한 연구 (A study on the effect of air velocity through a damper on smoke extraction performance in case of fire in road tunnels)

  • 류지오;나광훈
    • 한국터널지하공간학회 논문집
    • /
    • 제22권4호
    • /
    • pp.347-365
    • /
    • 2020
  • 도시지역의 교통난 해소와 녹지공간의 확보를 위해 도심지 터널이 증가하면서 차량의 정체 가능성이 높은 터널에 대한 제·배연방식으로 대배기구에 의한 집중배기방식의 적용이 증가하는 추세에 있다. 집중배기방식의 배연성능은 배연풍량 뿐만 아니라 배기구(댐퍼)의 형상이나 배기풍속 등 다양한 인자에 의해서 영향을 받는 것으로 알려져 있다. 이에 본 연구에서는 각국의 배연시스템 설계기준 및 설치현황을 알아보고 배연풍량이 동일한 경우에 배연댐퍼 사이즈에 따른 배연성능을 연기 이동거리 측면에서 수치시뮬레이션을 수행하여 비교·평가하였으며, 다음과 같은 결과를 얻었다. 배연댐퍼의 단면적이 증가할수록 배기팬에 근접한 댐퍼에서 배기풍량이 집중되어 화재 하류의 댐퍼의 배연풍량이 감소하여 하류측의 연기 이동거리가 증가하는 현상이 발생한다. 이와 같은 현상을 방지하기 위해서는 배연댐퍼의 단면적을 작게하여 통과풍속을 높게 함으로써 댐퍼통과 시 압력손실이 증가하도록 하여 배기구간에서 배연풍량의 불균일성을 완화할 필요가 있다. 본 해석범위에서는 배연댐퍼의 설치간격이 50 m인 경우에는 설계통과풍속이 4.4 m/s (댐퍼면적: 2.34 ㎡ = 1.25 × 1.85 m) 이상, 댐퍼의 설치간격이 100 m인 경우에는 설계통과풍속이 4.84 m/s (댐퍼면적: 3.38 ㎡ = 1.5 × 2.25 m) 이상일 때 배연성능확보에 유리한 것으로 나타났다.

식생체류지의 도시 강우유출수 처리효율 영향인자 조사 연구 (Investigation on the Factors Affecting Urban Stormwater Management Performance of Bioretention Systems)

  • ;;홍정선;김이형
    • 한국물환경학회지
    • /
    • 제33권1호
    • /
    • pp.1-7
    • /
    • 2017
  • 식생체류지는 도시 강우유출수 관리를 위한 저영향개발 및 그린인프라 기술이며, 개발이전의 상태를 최대한 유지하는 강우유출수 관리기술로 자연을 모방하면서 생태계의 다양성을 향상시키는 기술이다. 본 연구는 식생체류지의 물순환 능력과 비점오염물질의 저감효율에 영향을 끼치는 인자를 도출하기 위하여 4개의 식생체류지 시스템에 대하여 연구를 수행하였다. 2개의 식생체류지, 즉 Type A-C와 Type A-FC에는 국화와 매발톱꽃이 식재되었으며, Type B-A와 Type B-JM식생체류지에는 진달래 및 조팝나무와 같은 관목식물이 식재되었다. 연구결과 식생체류지의 유출저감, 저류량 및 오염물질 저감에 영향을 끼치는 인자로는 TV, 침투기작, 여과재의 두께와 식생 종류로 나타났다. Type B-A와 Type B-JM식생체류지 설계시에는 유출저감, 지하수 충진, 긴 체류시간과 첨두유출량 저감과 비점오염물질 저감을 고려하여 설계가 필요한 것으로 나타났다. 반면에 Type A-C와 Type A-FC 식생체류지 설계시에는 지하수 오염 저감을 중요하게 고려하여야 하는 것으로 나타났다.

히트파이프를 이용한 온풍난방기 배기열회수 시스템의 열회수 특성 (Heat Recovery Characteristics of the Exhaust Heat Recovery System with Heat Pipe Unit Attached to the Hot Air Heater in the Greenhouse)

  • 강금춘;김영중;유영선;백이;이건중
    • Journal of Biosystems Engineering
    • /
    • 제26권5호
    • /
    • pp.441-448
    • /
    • 2001
  • Hot air heater with light oil combustion is used as the most common heater for greenhouse heating in the winter season. However, exhaust gas heat discharged to atmosphere through chimney reaches up to 10~20% of total heat capacity of the oil burred. In order to recover the heat of this exhaust gas and to use for greenhouse heating, the heat pipe type exhaust heat recovery system was manufactured and tested in this experiment. The system consisted of a heat exchanger made of heat pipes, ø15.88${\times}$600mm located in the rectangular box of 675(L)${\times}$425(W)${\times}$370(H)mm, an air suction fan and air ducts. The number of heat pipe was 60, calculated considering the heat exchange amount between exhaust gas and air and heat transfer capacity of a heat pipe. The working fluid of heat pipe was acetone because acetone is known for its excellent heat transfer capacity. The system was attached to the exhaust gas path. According to the performance test it could recover 53,809 to 74,613kJ/h depending on the inlet air temperature of 12 to -12˚at air flow rate of 1.100㎥/h. The temperature of the exhaust gas left the heat exchanger dropped to 100$^{\circ}C$ from 270$^{\circ}C$ after the heat exchange between the suction air and the exhaust gas.

  • PDF

Adaptive V1-MT model for motion perception

  • Li, Shuai;Fan, Xiaoguang;Xu, Yuelei;Huang, Jinke
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권1호
    • /
    • pp.371-384
    • /
    • 2019
  • Motion perception has been tremendously improved in neuroscience and computer vision. The baseline motion perception model is mediated by the dorsal visual pathway involving the cortex areas the primary visual cortex (V1) and the middle temporal (V5 or MT) visual area. However, few works have been done on the extension of neural models to improve the efficacy and robustness of motion perception of real sequences. To overcome shortcomings in situations, such as varying illumination and large displacement, an adaptive V1-MT motion perception (Ad-V1MTMP) algorithm enriched to deal with real sequences is proposed and analyzed. First, the total variation semi-norm model based on Gabor functions (TV-Gabor) for structure-texture decomposition is performed to manage the illumination and color changes. And then, we study the impact of image local context, which is processed in extra-striate visual areas II (V2), on spatial motion integration by MT neurons, and propose a V1-V2 method to extract the image contrast information at a given location. Furthermore, we take feedback inputs from V2 into account during the polling stage. To use the algorithm on natural scenes, finally, multi-scale approach has been used to handle the frequency range, and adaptive pyramidal decomposition and decomposed spatio-temporal filters have been used to diminish computational cost. Theoretical analysis and experimental results suggest the new Ad-V1MTMP algorithm which mimics human primary motion pathway has universal, effective and robust performance.

경남지역 학교 급식조리실 개선 전후 환기성능 평가 (Evaluation of Ventilation Effectiveness Before and After Kitchen Renovation in Schools of Gyeongsangnam-do)

  • 손종원;김태형;하현철;김병훈
    • 한국산업보건학회지
    • /
    • 제34권1호
    • /
    • pp.35-47
    • /
    • 2024
  • Objectives: Many cases of lung cancer have been reported by school kitchen workers as occupational cancer. Twenty-eight schools in Gyeongsangnam-do Province were selected to evaluate the effect of improved kitchen ventilation systems. Ventilation characteristics before and after renovation were compared and design techniques were identified. Methods: In the design stage for kitchen ventilation systems, expert intervention was used to improve the designs. Ventilation characteristics and air quality were evaluated before and after the renovations. Hood face velocity and fan flow rate were measured and the smoke visualization technique was used to evaluate the capability of protecting worker's breathing zone. The concentrations of PM0.3 were measured at points not adjacent to cooking equipment because these concentrations fluctuate greatly. Results: Mean hood face velocity increased from 0.29 m/s before renovation to 0.7m/s after renovation. The concentrations of PM0.3 showed a roughly 95% reduction. Concentrations of CO showed more than a 75% reduction. Smoke visualization showed greater protection of workers' breathing zone. Conclusions: Advanced design techniques for school kitchen ventilation systems were applied to renovate old kitchen ventilation systems. The performance of the new kitchen ventilation systems was nearly excellent. Further improvement of design techniques is still needed, however.

설비공학 분야의 최근 연구 동향: 2014년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2014)

  • 이대영;김사량;김현정;김동선;박준석;임병찬
    • 설비공학논문집
    • /
    • 제27권7호
    • /
    • pp.380-394
    • /
    • 2015
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2014. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of heat and mass transfer, cooling and heating, and air-conditioning, the flow inside building rooms, and smoke control on fire. Research issues dealing with duct and pipe were reduced, but flows inside building rooms, and smoke controls were newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for thermal contact resistance measurement of metal interface, a fan coil with an oval-type heat exchanger, fouling characteristics of plate heat exchangers, effect of rib pitch in a two wall divergent channel, semi-empirical analysis in vertical mesoscale tubes, an integrated drying machine, microscale surface wrinkles, brazed plate heat exchangers, numerical analysis in printed circuit heat exchanger. In the area of pool boiling and condensing, non-uniform air flow, PCM applied thermal storage wall system, a new wavy cylindrical shape capsule, and HFC32/HFC152a mixtures on enhanced tubes, were actively studied. In the area of industrial heat exchangers, researches on solar water storage tank, effective design on the inserting part of refrigerator door gasket, impact of different boundary conditions in generating g-function, various construction of SCW type ground heat exchanger and a heat pump for closed cooling water heat recovery were performed. (3) In the field of refrigeration, various studies were carried out in the categories of refrigeration cycle, alternative refrigeration and modelling and controls including energy recoveries from industrial boilers and vehicles, improvement of dehumidification systems, novel defrost systems, fault diagnosis and optimum controls for heat pump systems. It is particularly notable that a substantial number of studies were dedicated for the development of air-conditioning and power recovery systems for electric vehicles in this year. (4) In building mechanical system research fields, seventeen studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, and renewable energies, piping in the buildings. Proposed designs, performance performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the evaluation of work noise in tunnel construction and the simulation and development of a light-shelf system. The subjects of building energy were worked on the energy saving of office building applied with window blind and phase change material(PCM), a method of existing building energy simulation using energy audit data, the estimation of thermal consumption unit of apartment building and its case studies, dynamic window performance, a writing method of energy consumption report and energy estimation of apartment building using district heating system. The remained studies were related to the improvement of architectural engineering education system for plant engineering industry, estimating cooling and heating degree days for variable base temperature, a prediction method of underground temperature, the comfort control algorithm of car air conditioner, the smoke control performance evaluation of high-rise building, evaluation of thermal energy systems of bio safety laboratory and a development of measuring device of solar heat gain coefficient of fenestration system.

설비공학 분야의 최근 연구 동향 : 2010년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2010)

  • 한화택;이대영;김서영;최종민;김수민;권영철;백용규
    • 설비공학논문집
    • /
    • 제23권6호
    • /
    • pp.449-469
    • /
    • 2011
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering during 2010. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends of thermal and fluid engineering have been surveyed as groups of general thermal and fluid flow, fluid machinery, and new and renewable energy. Various topics were presented in the field of general thermal and fluid flow. Research issues mainly focused on the thermal reliability of axial fan and compressor in the field of fluid machinery. Studies on the design of ground source heat pump systems and solar chemical reactors were executed in the field of new and renewable energy. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics and industrial heat exchangers. Researches on heat transfer characteristics included heat transfer in thermoelectric cooling/power generation systems, combined heat and power systems, carbon nano fluid with PVP, channel filled with metal foam and smoke ventilation in a rescue station of a railroad tunnel. Also the studies on flow boiling of R123/oil mixture in a plain tube bundle and R410A charge amount in an air cooled mini-channel condenser were reported. In the area of industrial heat exchangers, researches on plate heat exchanger, shell and tube heat exchanger, enthalpy exchanger, micro channel PCHE were performed. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics and industrial heat exchangers. Researches on heat transfer characteristics included heat transfer in thermoelectric cooling/power generation systems, combined heat and power systems, carbon nano fluid with PVP, channel filled with metal foam and smoke ventilation in a rescue station of a railroad tunnel. Also the studies on flow boiling of R123/oil mixture in a plain tube bundle and R410A charge amount in an air cooled mini-channel condenser were reported. In the area of industrial heat exchangers, researches on plate heat exchanger, shell and tube heat exchanger, enthalpy exchanger, micro channel PCHE were performed. (3) Refrigeration systems with alternative refrigerants such as hydrocarbons, mixed refrigerants, and CO2 were studied. Performance improvement of refrigeration systems are tried applying various ideas of refrigerant subcooling, dual evaporator with hot gas bypass control and feedforward control. The hybrid solar systems combining the solar collection devices with absorption chillers or compression heat pumps are simulated and studied experimentally as well to improve the understanding and the feasibility for actual applications. (4) Research trend in the field of mechanical building facilities has been found to be mainly focused on field applications rather than performance improvements. Various studies on heating and cooling systems, HVAC facilities, indoor air environments and energy resources were carried to improve the maintenance and management of building service equipments. In the field of heating and cooling systems, papers on a transformer cooling system, a combined heat and power, a slab thermal storage and a heat pump were reported. In the field of HVAC facilities, papers on a cooling load, an ondol and a drying were presented. Also, studies on HVAC systems using unutilized indoor air environments and energy resources such as air curtains, bioviolence, cleanrooms, ventilation, district heating, landfill gas were studied. (5) In the field of architectural environment and energy, studies of various purposes were conducted such as indoor environment, building energy, renewable energy and green building. In particular, renewable energy and building energy-related researches have mainly been studied reflecting the global interest. In addition, many researches which related the domestic green building certification of school building were performed to improve the indoor environment of school.

확산파에 기초한 분포형 유출모형의 개발 및 적용 (Development and Application of Diffusion Wave-based Distributed Runoff Model)

  • 이민호;유동훈
    • 한국수자원학회논문집
    • /
    • 제44권7호
    • /
    • pp.553-563
    • /
    • 2011
  • 분포형 유출모형에 대하여는 컴퓨터의 발달과 지리정보시스템의 구축 및 관련정보의 제공이 활성화되면서 최근 많은 연구가 진행되고 있다. 이러한 분포형 유출모형은 대상유역을 보다 세분 요소화하여 계산하는 이론적이고 물리적인 기반의 모형이다. 본 연구에서는 토지피복 상태에 따라 결정되는 매개변수와 2차원 확산파 방정식에 기초하여 지표면에서의 유출량을 계산하는 모형을 개발하였다. 기존에 연구되었거나 개발 중인 유출모형은 대부분 Manning-Strickler의 평균 유속공식과 Manning 조도계수를 이용하여 유속과 유량을 산정하고 있다. Manning 조도계수는 사용상의 편의성 때문에 보편적으로 사용하고 있으나, 차원이 일치하지 않고 추정 시 모호한 문제점이 있다. 이러한 문제를 개선하기 위해 본 연구에서는 Manning-Strickler식뿐만 아니라 차원이 일치하는 Chezy의 평균유속공식을 적용하여 유출모형을 개발하였다. 또한, Chezy의 마찰계수를 적용하기 위하여 조고의 함수로 표현되는 지수형 마찰계수 산정식을 도입하였다. 따라서 모호한 조도계수의 개념을이용하지 않고 거친 정도를수치화하여 물리적인 의미를 가진마찰계수를 산정하고 적용 가능성을 검토하였다. 본 연구에서는 개발된 모형을 부채꼴 실험유역과 장방형 실험유역 및 실제유역인 안성천유역을 대상으로 6개의 사상을 적용하여 그 적용성을 확인하였다.

Numerical study on conjugate heat transfer in a liquid-metal-cooled pipe based on a four-equation turbulent heat transfer model

  • Xian-Wen Li;Xing-Kang Su;Long Gu;Xiang-Yang Wang;Da-Jun Fan
    • Nuclear Engineering and Technology
    • /
    • 제55권5호
    • /
    • pp.1802-1813
    • /
    • 2023
  • Conjugate heat transfer between liquid metal and solid is a common phenomenon in a liquid-metal-cooled fast reactor's fuel assembly and heat exchanger, dramatically affecting the reactor's safety and economy. Therefore, comprehensively studying the sophisticated conjugate heat transfer in a liquid-metal-cooled fast reactor is profound. However, it has been evidenced that the traditional Simple Gradient Diffusion Hypothesis (SGDH), assuming a constant turbulent Prandtl number (Prt,, usually 0.85 - 1.0), is inappropriate in the Computational Fluid Dynamics (CFD) simulations of liquid metal. In recent decades, numerous studies have been performed on the four-equation model, which is expected to improve the precision of liquid metal's CFD simulations but has not been introduced into the conjugate heat transfer calculation between liquid metal and solid. Consequently, a four-equation model, consisting of the Abe k - ε turbulence model and the Manservisi k𝜃 - ε𝜃 heat transfer model, is applied to study the conjugate heat transfer concerning liquid metal in the present work. To verify the numerical validity of the four-equation model used in the conjugate heat transfer simulations, we reproduce Johnson's experiments of the liquid lead-bismuth-cooled turbulent pipe flow using the four-equation model and the traditional SGDH model. The simulation results obtained with different models are compared with the available experimental data, revealing that the relative errors of the local Nusselt number and mean heat transfer coefficient obtained with the four-equation model are considerably reduced compared with the SGDH model. Then, the thermal-hydraulic characteristics of liquid metal turbulent pipe flow obtained with the four-equation model are analyzed. Moreover, the impact of the turbulence model used in the four-equation model on overall simulation performance is investigated. At last, the effectiveness of the four-equation model in the CFD simulations of liquid sodium conjugate heat transfer is assessed. This paper mainly proves that it is feasible to use the four-equation model in the study of liquid metal conjugate heat transfer and provides a reference for the research of conjugate heat transfer in a liquid-metal-cooled fast reactor.

느타리재배사 정역 제어 대류팬이 공기 균일도에 미치는 영향 (Effect of Reversible Air-circulation Fans on Air Uniformity in a Cultivation Facility for Oyster Mushroom)

  • 염성현;김시환
    • 생물환경조절학회지
    • /
    • 제30권4호
    • /
    • pp.383-392
    • /
    • 2021
  • 느타리버섯은 재배사 내부환경에 크게 영향을 받으며 강제 공기순환팬에 의해 공기를 교반하여 내부환경의 균일도를 향상시키고 있다. 본 연구는 느타리버섯 일부 시범 농가에서의 대류팬 작동방법 등 이용 실태를 조사하고, FCU를 가동하지 않은 버섯의 수확이 끝날 무렵이고 폐상 직전인 7.1-10까지 10일 간 느타리 균상재배사에 상향과 하향 등 양방향으로 번갈아 바람을 토출하는 정역 제어 대류팬과 단일 방향인 상향으로만 바람을 토출하는 관행 방식의 유동팬을 설치하여 재배사 내부환경의 균일도를 평가하고자 수행하였다. 조사 농가의 대류팬 작동방법(작동시간과 멈춤시간의 조합 방법)은 대부분 5-15분 작동 후 5-30분 멈춤을 반복적으로 적용하고 있는 것으로 조사되었으며 냉방장치를 가동하지 않은 폐상 무렵의 느타리 균상재배사에 정역 제어 대류팬을 설치하여 내부 환경 균일도를 평가한 결과, 최대 기온 편차는 1.4-1.8℃, 최대 상대습도 편차는 7.8-8.7%로 나타나 최대 기온 편차 3.2-3.7℃, 최대 상대습도 편차 14.0-15.4%를 보인 관행 방식의 유동팬에 비해 내부환경 균일도가 향상된 것으로 나타났다. 20가지의 정역 제어 대류팬 작동방법 중에서는 10-15분간 상향으로 바람을 토출한 후 5-10분 간 멈추고 바람의 방향을 바꾸어 하향으로 10-15분 간 바람을 토출하는 경우가 가장 적은 기온 편차(1.4-1.5℃)를 보였으나 센서의 오차범위 수준에 있어 설정별 차이를 보인다고는 판단할 수 없었다. 향후 버섯의 호흡이 온전히 고려되고 냉방장치가 가동되는 실제 재배기간 중 정역 제어 대류팬이 공기 균일도와 느타리버섯 품질에 미치는 영향을 평가할 필요가 있을 것으로 판단되었으며 재배사 내 공기교반 정도를 확인하기 위한 유동 가시화 연구가 필요할 것으로 판단되었다.