• Title/Summary/Keyword: Fan flow performance

Search Result 420, Processing Time 0.025 seconds

Investigation on Aerodynamic Performance of a Highly-Loaded Axial Fan with Active/Passive Flow Control Using FSI Analysis (유체-구조 연성해석을 이용한 능동/수동 유동제어방식이 결합된 고하중 축류 팬의 성능특성 연구)

  • Ma, Sang-Bum;Kim, Kwang-Yong;Choi, Jaeho;Lee, Wonsuk
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.1
    • /
    • pp.113-119
    • /
    • 2017
  • An investigation on aerodynamic performance of a highly-loaded axial fan has been conducted to find the effects of tip injection and casing groove on aerodynamic performance in this study. Three-dimensional Reynolds-averaged Navier-Stokes equations with $k-{\varepsilon}$ turbulence model were used to analyze the fluid flow in the fan with Fluid-Structure Interaction (FSI) analysis. The hexahedral grid was used to construct computational domain, and the grid dependency test drew the optimal grid system. FSI analysis was also carried out to predict the deformation of rotor and stator blades, and the effect of deformation on the aerodynamic performance of axial fan was analyzed compared to the performance predicted without FSI analysis.

Flow Noise in the Outdoor Unit of an Air-conditioner (에어컨 실외기에서의 유동소음)

  • 이승배;이재환;김휘중;최진규;진성훈;박윤서
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.594-601
    • /
    • 1997
  • Propeller fans are commonly equipped in outdoor units of air-conditioners to provide effective cooling in a dried heat exchanger. A new design technique was developed to satisfy requirements of aerodynamic and aeroacoustic performance, which employs the intersection method of two cylinders for mean camber line. Three proto-types of propeller fan including Palm-Shaped, Highly-Swept(PSHS) fan (proto 3)were not only to provide low lift forces for dipole sound, but also to reduce the organized tip vortices interacting with the fan guide causing narrow-banded rotating instabilities. Cross-correlation technique was applied to study flow noise source characteristics for three proto-type fans designed. The cross-correlations between a microphone at far field and a hot-wire sensor at near field show that flows near hub region of proto 3 fan are less organized and the flow structures especially at high flow rate coefficients for proto 3 fan are less correlated with noise generated than other proto-types fans.

  • PDF

Unsteady Pressure Measurement of Fan Stator Vane Using Pressure Sensitive Paint

  • Sakamoto, Kazuyuki;Tsuchiya, Naoki;Yamamoto, Masahiko;Hamano, Yasunori;Fujii, Kozo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.789-794
    • /
    • 2004
  • The pressure sensitive paint (PSP) technique has been well established in external flow field. However, there are still unresolved issues in internal flow field. This work was focused on the application to unsteady pressure measurement of fan flow field. The PSP measurement system was established and the image processing software was developed. First, the performance of PSP was investigated at the static cell. Then the unsteady PSP measurement was carried out at fan test facility. PSP data images were acquired from the suction and pressure surface of stator vanes. Pressure distributions on the surface of the stator vane were detected non-intrusively. The issues of image acquisition and image processing were clarified through the practical PSP application to fan flow field.

  • PDF

NUMERICAL ANALYSIS OF UNSTEADY FLOW FIELD AND AEROACOUSTIC NOISE OF AN AXIAL FLOW FAN (축류팬의 비정상 유동장 및 유동소음의 수치 해석)

  • Kim, Wook;Hur, Nahm-Keon;Jeon, Wan-Ho
    • Journal of computational fluids engineering
    • /
    • v.15 no.4
    • /
    • pp.60-66
    • /
    • 2010
  • Unsteady Reynolds Averaged Navier-Stokes(URANS) and Large Eddy Simulation(LES) simulation of an axial flow fan are calculated upon same conditions and computational grids in order to study aeroacoustic noise of an axial flow fan numerically. Results of computed performance and predicted noise are compared with those of measurement. Both performances show accurate results with a significant difference of less than 5%. However, noise of LES result is more close to measured noise qualitatively than URANS. Levels of tonal noises of both LES and URANS are quite similar with those of measured at BPF(Blade Passing Frequency) in sound spectrum. However, as leading edge separation and tip vortex shedding phenomena of LES are showed more clearly than those of URANS, sound level of broadband noise of LES corresponds better than that of URANS, especially.

Analysis of the aeroacoustic characteristics of cross-flow fan using commercial CFD code (상용 CFD코드를 이용한 횡류홴 공력소음 특성 해석)

  • Jeon, Wan-Ho;Gi, Jeong-Mun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.334.1-334
    • /
    • 2002
  • In this study, a cross-flow fan system used in indoor unit of the split-type air conditioner is analyzed by computational simulation. A commercial CFD code - Fluent - is used to calculate the performance and its unsteady flow characteristics. The unsteady incompressible Wavier-Stokes equations are solved using a sliding mesh technique on the interface between rotating fan region and the outside. The acoustic pressure is calculated by using Ffowcs-Williams and Hawkings equation. (omitted)

  • PDF

Effects of Silencer Design on the Performance of Jet-fan (제트홴 소음기 형상이 성능에 미치는 영향)

  • Oh, In-Gyu;Choi, Young-Seok;Kim, Joon-Hyung;Yang, Sang-Ho;Kwon, Oh-Myoung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.6
    • /
    • pp.25-29
    • /
    • 2010
  • In this paper, a numerical study has been carried out to investigate the influence of silencer design variables on the performance of a jet fan. In order to achieve an optimum jet fan design and to explain the interactions between the different geometric configurations in the jet fan, three-dimensional computational fluid dynamics and the Design of Experiments method have been applied. Two geometric variables, i.e., cap size and silencer length, were employed to improve the performance of the jet fan. The objective functions of the jet fan are defined as the effective velocity and total efficiency at the operating condition. Based on the results of computational analyses, the flow characteristics were discussed. The effect of silencer with a specific roughness on the performance was also discussed.

Prediction of Frequency Modulation of BPF Tonal Noise for Random Pitch Cross-Flow Fans by Unsteady Viscous Flow Computations (비정상 점성유동 해석에 의한 부등피치 횡류홴의 BPF 순음 주파수 변조 특성 예측)

  • Cho, Yong;Moon, Young J.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.3
    • /
    • pp.286-293
    • /
    • 2003
  • The unsteady flow characteristics and associated blade tonal noise of a cross-flow fan are predicted by computational methods. The incompressible Navier-Stokes equations are time-accurately solved for obtaining the pressure fluctuations between the rotating blades and the stabilizer. and the sound pressure is predicted using Curie's equation. The discrete noise characteristics of three impellers with a uniform and two random pitch (type-A and -B) blades are compared by their SPL (Sound Pressure Level) spectra. and the frequency modulation characteristics of the BPF (Blade Passing Frequency) noise are discussed. Besides. a mathematical model is proposed for the prediction of discrete blade tonal noise and is validated with available experimental data. The fan performance is also compared with experimental data. indicating that the random pitch effect does not significantly alter the performance characteristics at ${\phi}$ 〉 0.4

PERFORMANCE IMPROVEMENT OF A RANGE HOOD SIROCCO FAN BY CFD FLOW ANALYSIS (렌지후드의 성능개선을 위한 시로코 펜 주위의 유동해석)

  • Han, B.Y.;Park, J.W.;Lee, M.S.;Park, H.K.
    • Journal of computational fluids engineering
    • /
    • v.13 no.4
    • /
    • pp.72-79
    • /
    • 2008
  • This study is to investigate the air flow around a sirocco fan which is used in a range hood. The main object of the study is to improve the flow rate of the fan by analysis of unsteady 3-dimensional incompressible flow. Overall analysis is carried out using CFD method. For this, we used a commercial code, SC/Tetra, and used a sliding mesh method to give the same condition as an actual state. First, verification of the CFD results is done by comparing the experimental data with the numerical data for the suction flow rate. It is confirmed that two results are well consistent. Then for the improvent of flow rate, the effect of shape factors such as diameter ratio of fan, geometry of case, cut-off aperture and guide angle of case exit on the suction flow rate was considered. Especially, for a new design of housing, the principle of Archimedes spiral was used. The overall analysis was applied to a new design of housing, and the result showed an increase of flow rate by 10.7%.

A Numerical Study on Low Noise Refrigerator Fans (저소음 냉장고용 팬의 운동 해석)

  • Kim, Wook;Jeon, Wan-Ho;Jung, Yong-Gyu;Kim, Chang-Joon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.489-495
    • /
    • 2003
  • A high performance and low noise refrigerator fan has been developed in order to satisfy the customer's high quality needs, that is, luxury, big size and low noise. In this study, the characteristics of a new developed fan and a current fan was calculated and compared by using numerical simulation. Rotation of a fan makes cold air circulation inside a refrigerator. A numerical simulation of air flow shows distribution and local flow regime of a cold air flow circulation, and revealed a cause of low noise as well. Optimization of a duct shape also decreased noise level.

  • PDF

Study on the Design Concept of Impinging Jet Electronics Cooling by Using Axial Fan (축류 팬을 이용한 충돌제트 전자냉각 설계개념에 대한 연구)

  • Lee, Chan;Kil, Hyun-Gwon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.2
    • /
    • pp.24-30
    • /
    • 2009
  • Flow and noise analyses are conducted for examining a new design concept of impinging jet electronics cooling, and the analysis results are compared with conventional electronics cooling techniques. For the application of impinging jet electronics cooling method, the present study considers the air duct where air is supplied by axial fan and air flow from the duct is impinged vertically onto the electronic component heat source. Applying CFD simulation technique and fan noise model to the present cooling scheme, the cooling performance of the impinging jet as well as the operation condition and the noise characteristics of fan are investigated for various impinging jet nozzle conditions and fan models. Furthermore, the impinging jet electronics cooling analysis results are compared with the conventional parallel-flow cooling scheme to give the design concept and criteria of impinging jet cooling method.