• Title/Summary/Keyword: Fan flow performance

Search Result 420, Processing Time 0.031 seconds

A Numerical Investigation of Flow and Performance Characteristics of a Small Propeller Fan Using Viscous Flow Calculations

  • Oh, Keon-Je;Kang, Shin-Hyoung
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.386-394
    • /
    • 2002
  • The present work is aimed at investigating an unusual variation in flow and performance characteristics of a small propeller fan at low flow rates. A performance test of the fan showed dual performance characteristics, i.e., radial type characteristics at low flow rates and axial type at high flow rates. Dual performance characteristics of the fan are numerically investigated using viscous flow calculations. The Finite Volume Method is used to solve the continuity and Navier-Stokes equations in the flow domain around a fan. The performance parameters and the circumferentially averaged velocity components obtained from the calculations are compared with the experimental results. Numerical values of the performance parameters show good agreement with the measured values. The calculation simulates the steep variations of performance parameters at low flow rates and shows the difference in the flow structure between high and low flow rates. At a low flow coefficient of $\Phi$=0.2, the flow enters the fan in an axial direction and is discharged radially outward at its tip, which is much like the flow characteristics of a centrifugal fan. The centrifugal effect at low flow rates makes a significant difference in performance characteristics of the fan. As the inlet flow rate increases, flow around the fan changes into the mixed type at $\Phi$=0.24 and the axial discharge at $\Phi$=0.4.

The performance and flow characteristics of a small propeller fan with a back-plate (뒷판이 있는 소형 프로펠러 팬의 성능 및 유동특성)

  • Gang, Sin-Hyeong;Kim, Jin-Gwon;Lee, Seung-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.4
    • /
    • pp.1491-1500
    • /
    • 1996
  • Unstable performance deterioration was found on the performance curve of a small propeller fan with a back plate. To investigate this phenomenon and the effects of the back-plate on the performance of the fan, performance tests and flow measurement using 3-hole pitot tube were carried out. Measurements showed that when the flow rate is small, the radial flow dominates, and when the flow rate is large, the axial flow dominates. Performance characteristic of the propeller fan changes from radial to axial type as the flow rate increases. Unstable performance changes are the result of type change of the flow through the fan.

Experimental and Numerical Studies on the Flow Characteristics of a Fan-Sink (팬싱크의 유동 특성에 관한 실험 및 수치해석적 연구)

  • Lee Kyoung-Yong;Choi Young-Seok;Yun Jae-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.3
    • /
    • pp.225-230
    • /
    • 2006
  • The overall performance and local flow fields of the fan, heat sink, and fan-sink were experimentally and numerically studied to investigate the flow characteristics of a fan-sink. The flow resistance of the heat sink was measured by small fan tester based on AMCA standards and compared with the CFD results to select available cooling fan for the fan-sink. The nonuniform velocity profile behind the fan outlet was shown by the flow visualization. The effects of nonuniform velocities on the performance of heat sink were discussed. To validate the commercial CFD code CFX-5.6, the predicted performance curve was compared with that of fan testing. The local flow fields of the fan-sink were analyzed by CFD results. MFR (multiple frame of reference) was used as a computational model combining rotating fan and stationary heat sink. Through the CFD results of the fan-sink, the flow patterns behind the fan outlet influenced the flow resistance and overall performance of the heat sink.

Reduction of Flow-Induced Noise in Suction Nozzle of a Vacuum Cleaner by Adopting a Cross-Flow Fan (횡류팬을 적용한 진공청소기 흡입노즐내 유동 소음 저감에 관한 연구)

  • Park, I-Sun;Sohn, Chae-Hoon;Lee, Sung-Cheol;Oh, Jang-Keun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.935-938
    • /
    • 2007
  • In suction nozzle of a vacuum cleaner, where flow-induced noise is generated mainly by flow resistance, several ideas to reduce noise are investigated. To increase fan performance, blade number is optimized and a centrifugal fan is replaced by a cross-flow fan, In addition, gear ratio of fan to drum brush is changed. It is found that fan performance is increased by adopting these methods. Next, the blade height of the fan is decreased to reduce sound pressure level, which causes inevitably decrease in fan performance. Eventually, flow-induced noise is reduced by 6.3 dBA in its overall level with the fan performance maintained.

  • PDF

Development of a High-efficiency and Low-noise Axial Flow Fan through Combining FanDAS and CFX codes (FanDAS-CFX 결합을 통한 고효율-저소음 축류 송풍기의 개발)

  • Lee, Chan;Kil, Hyun Gwon;Noh, Myung-Keun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.5
    • /
    • pp.37-41
    • /
    • 2012
  • High-efficiency and low-noise axial flow fan is developed by combining the FanDAS, a computerized axial fan design/performance analysis system, and CFD software(CFX). Based on fan design requirements, FanDAS conducts 3-D blade geometry design, quasi-3D flow/ performance analyses and noise evaluation by using through-flow analysis method and noise models for discrete frequency and broadband noise sources. Through the parametric studies of fan design variables using FandDAS, preliminary and baseline design is achieved for high efficiency and low noise fan, and then can be coupled with a CFD technique such as the CFX code for constructing final and optimized fan design. The FanDAS-CFX coupled system and its design procedure are applied to actual fan development practice. The FanDAS provides an optimized 3-D fan blade geometry, and its predictions on the performance and the noise level of designed fan are well agreed with actual test results.

Performance Characteristics of an Axial Flow Fan According to the Shape of a Hub Cap (허브 캡 형상에 따른 축류송풍기 성능특성)

  • Jang, Choon-Man;Choi, Seung-Man;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.6 s.39
    • /
    • pp.9-16
    • /
    • 2006
  • Performance characteristics of an axial flow fan having distorted inlet flow have been investigated using numerical analysis as well as experiment. Two kinds of hub-cap, rounded and right-angled front shape, are tested to investigate the effect of inlet flow distortion on the fan performance. Numerical solutions are validated in comparison with experimental data measured by a five-hole probe downstream of the fan rotor. It is found from the numerical results that non-uniform axial inlet velocity profile near the hub results in the change of inlet flow angle. Large recirculation flow upstream the fan rotor for the right-angled hub-cap induces a negative incidence, thus invokes separated flow on the blade surfaces and deteriorates the performance of fan rotor.

Flow Behavior and Performance Characteristics of Constant Air Volume Fan According to Different Hub Shape (허브 형상에 따른 정풍량 환기팬의 유동과 성능특성)

  • Lee, Ho-Ho;Choi, Hang-Cheol;Jung, Jae-Goo;Lee, Yoon-Pyo;Shin, Yoo-Hwan;Chung, Jin-Taek
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.2
    • /
    • pp.57-62
    • /
    • 2012
  • The constant air volume flow fan can maintain constant flow rate to the wide range of exit pressure. Therefore, the use of this fan is increasing recently for ventilation of high building. Brushless DC motor is adopted to this fan because that has advantages of compactness and performance. But this type of motor protrude from impeller hub side to fan inlet. The Impeller inlet flow is influenced by size of this obstacle called hub. In this paper, the influence of hub shape on the fan performance characteristics are experimentally and numerically analyzed. CFX 12.0 is used to perform the fan internal flow analysis and numerical results are compared with the experiments. Depending on hub shape, internal loss is generated and the performance and efficiency are reduced. The best performance is occurred around $h/b_1$ = 0.25. The results of this study will be contribute to initial design of constant air volume flow fan development.

A Numerical Method & Experiments for the Aerodynamic Design of High Performance 2-Stage Axial Flow Fans (고성능 2단 축류송풍기의 공력설계를 위한 수치해석 및 실험에 관한 연구)

  • Cho, Jinsoo;Han, Cheolhui;Cho, Leesang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.8
    • /
    • pp.1048-1062
    • /
    • 1999
  • A numerical method and experiments for the aerodynamic design of high performance two-stage axial flow fans was carried out. A vortex ring element method used for the aerodynamic analysis of the propellers was extended to the fan-duct system. Fan Performance and velocity profiles at the fan inlet and outlet are compared with experimental data for the validations of numerical method. Performance test was done based on KS B 6311(testing methods for turbo-fans and blowers). The velocity profile was obtained using a 5-hole pitot tube by the non-nulling method. The two stage axial flow fan configurations for the optimal operation conditions were set by using the experimental results for the single rotating axial flow fan and the single stage axial flow fan. The single rotating axial flow fan showed relatively low efficiency due to the swirl velocities behind rotor exit which produced pressure losses. In contrast, the single stage and the two-stage axial flow fans showed performance improvements due to the swirl velocity reduction by the stator. The peak efficiency of the two stage axial flow fan was improved by 21% and 6%, compared to the single rotating axial flow fan and the single stage axial flow fan, respectively.

Design of Low Noise Axial Flow Fan Using Specific Sound Presssure Level (비소음 측정을 이용한 저소음 축류홴 설계)

  • 김창준;이동익
    • Journal of KSNVE
    • /
    • v.10 no.5
    • /
    • pp.873-879
    • /
    • 2000
  • Experimental investigation was conducted to study the effects of pitch angle maximum camber on the performance and noise of an axial-flow fan used in outdoor-unit of air -conditioner. For this study the axial-flow fan whose pitch angle can be varied was made and the Specific sound Pressure Level and other coefficients were measured using the anechoic fan tester. It is found that pitch angle affects more severly than the maximum camber on the fan performance. On the while the maximum camber affects much on the specific sound power level. Present results show that it is important to choose the optimum pitch angle and maximum camber to design the high-performance and low-noise axial-flow fan and specific noise measured in the anechoic fan tester can be sued effectively for the design of low-noise fan.

  • PDF

A Study on the Performance Characteristics of the Sirocco Fan in a Range Hood (레인지 후드용 시로코 홴 성능 특성에 관한 연구)

  • Park, Sang-Tae;Choi, Young-Seok;Park, Moon-Soo;Kim, Cheol-Ho;Kwon, Oh-Myoung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.2 s.29
    • /
    • pp.9-15
    • /
    • 2005
  • This paper presents an experimental and numerical study on the overall performance and local flow characteristics of sirocco fan in a range hood. Measurement of overall performance for sirocco fans were conducted based on AMCA standard 210. The effects of flow blockages due to the motor inside the fan on the fan performance were investigated by experimentally and numerically and the results were compared with each other. The numerical and experimental results show the inlet flow blockage reduces the performance (ie. fan static pressure, design flow rate, maximum efficiency and free delivery flow rate) of fan. It is found that the blockage makes the flow field highly non-uniform through the blade and cause the efficiency decrement.