• Title/Summary/Keyword: Fan broadband noise

Search Result 51, Processing Time 0.027 seconds

Measurement and Prediction of Aerodynamic Noise from Sirocco Fans (시로코 홴 성능 및 공력 소음 예측에 관한 연구)

  • Kim, Kyoung-Ho;Park, Kye-Chan;Lee, Seungbae
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.4 s.5
    • /
    • pp.57-64
    • /
    • 1999
  • The prediction method of the performance and aerodynamic noise from a sirocco fan was developed and compared with measured data. To predict the performance of the sirocco fan, the well-known slip coefficients and various loss models were tested and applied to forward curved sirocco impellers. Using loss models proposed for both impeller and casing, the predicted performance characteristics were in good agreement with measured ones by an ANSI test plenum. Various scaling models for aerodynamic noise from the sirocco fan were evaluated and tested against measured power levels in terms of flow coefficient. It was shown that the turbulent broadband sound power from the sirocco fan can be modeled successfully by trailing edge noise.

  • PDF

A Study on the Flow Characteristics and Noise Predictions around the Shroud Fan using the Aero-acoustic Noise Model (공력소음 모델을 이용한 슈라우드 팬 주위의 유동특성 및 소음예측에 관한 연구)

  • Mo, Jang-Oh;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.3
    • /
    • pp.19-25
    • /
    • 2009
  • InThe purpose of this work is to analyze the flow characteristics and aerodynamic noise generated from a shroud fan at a constant 2,100 rpm using LES and FW-H noise model provided in the commercial code, FLUENT. Velocity distributions around the shroud fan obtained by using FLUENT code show good agreement with experimental results. The sound pressure level is decreased by about 6 dB as the distance from the fan increases twice. The directivity at 1st BPF shows a tendency of increasing SPL toward the axis of rotation.

Time-domain Computation of Broadband Noise due to Turbulence - cascade Interaction (난류-캐스케이드 상호 작용에 의한 광대역 소음장의 시간영역 계산)

  • Jung, Sung-Soo;Cheung, Wan-Sup;Lee, Soo-Gab;Cheong, Cheol-Ung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.3 s.108
    • /
    • pp.263-269
    • /
    • 2006
  • The objective of the present work is to develop a time-domain numerical method of broadband noise in a cascade of airfoils. This paper focuses on dipolar broadband noise sources, resulting from the interaction of turbulent inflows with the flat-plate airfoil cascade. The turbulence response of a two-dimensional cascade is studied by solving both of the linearised and the full nonlinear Euler equations employing accurate higher order spatial differencing, time stepping techniques and non-reflecting inflow/outflow boundary condition. The time-domain result using the linearised Euler equations shows good agreement with the analytical solution using the modified LINSUB code. Through the comparison of the nonlinear time-domain result using the full nonlinear Euler equations with the linear, it is found that the acoustic mode amplitude of the nonlinear response is less than that of the linear response due to the energy cascade from low frequency components to the high frequency ones. Considering the merits of the time-domain methods over the typical time-linearised frequency-domain analysis, the current method is expected to be promising tools for analyzing the effects of the airfoil shapes, non-uniform background flow, linear-nonliear regimes on the broadband noise due to turbulence-cascade interaction.

Time-domain Computation of Broadband Noise due to Turbulence-Cascade Interaction (난류-캐스케이드 상호 작용에 의한 광대역 소음장의 시간영역 계산)

  • Cheong, Cheol-Ung;Jeong, Sung-Su;Cheung, Wan-Sup;Lee, Soo-Gab
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.812-817
    • /
    • 2005
  • The objective of the present work is to develop a time-domain numerical method of broadband noise in a cascade of airfoils. This paper focuses on dipole broadband noise sources, resulting from the interaction of turbulent inflows with the flat-plate airfoil cascade. The turbulence response of a two-dimensional cascade is studied by solving both of the linearised and full nonlinear Euler equations employing accurate higher order spatial differencing, time stepping techniques and non-reflecting inflow/outflow boundary condition. The time-domain result using the linearised Euler equations shows good agreement with the analytical solution using the modified LINSUB code. Through the comparison of the nonlinear time-domain result using the full nonlinear Euler equations with the linear, it is found that the acoustic mode amplitude of the nonlinear response is less than that of the linear response due to the energy cascade from low frequency components to the high frequency ones. Considering the merits of the time-domain methods over the typical time-linearised frequency-domain analysis, the current method is expected to be promising tools for analyzing the effects of the airfoil shapes, non-uniform background flow, linear-nonliear regimes on the broadband noise due to gust-cascade interaction.

  • PDF

Computation of Broadband Noise of a 2-B Flat-airfoil Cascade Subject to Ingested Turbulence (난류 와류의 입사에 의한 이차원 평판 에어포일 캐스케이드의 광대역 소음장의 계산)

  • Cheong, Cheolung;Joseph Phillip;Lee, Soogab
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.6 s.99
    • /
    • pp.687-696
    • /
    • 2005
  • Acoustic power spectrum of the upstream and downstream sound field due to an isotropic frozen turbulent gust impinging on a cascade of flat plate airfoils are computed by using a analytic formulation derived from Smith's method, and Whitehead's LINSUB codes. A parametric study of the effects on sound power of the number of blades and turbulence length scale is performed with an emphasis on analyzing the characteristics of sound power spectrum. Through the comparison of the computed results of sound power, it is found that acoustic power spectrum from the 2-D cascade subject to a ingested turbulence can be categorized into two distinct regions. one is lower frequency region where some spectral components of turbulence do not contribute to the cut-on acoustic modes and therefore the effect of the cascade geometry is more dominant ; the other is higher frequency region where all of spectral components of turbulence make contributions to cut-on acoustic modes and thus acoustic power is approximately proportional to the blade number.

High-frequency Approximate Formulation for the Prediction of Broadband Noise of Airfoil Cascades with Inflow Turbulence (유입 난류에 의한 에어포일 캐스케이드 광대역 소음장의 고주파 근사 예측식의 개발)

  • Jung, Sung-Soo;Cheung, Wan-Sup;Lee, Soogab;Cheong, Cheolung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.10 s.103
    • /
    • pp.1177-1185
    • /
    • 2005
  • This paper investigates the noise radiated by a cascade of flat-plate airfoils interacting with homogeneous, isotropic turbulence. At frequencies above the critical frequency, all wavenumber components of turbulence excite propagating cascade modes, and cascade effects are shown to be relatively weak. In this frequency range, acoustic power was shown to be approximately proportional to the number of blades. Based on this finding at high frequencies, an approximate expression is derived for the power spectrum that is valid above the critical frequency and which is in excellent agreement with the exact expression for the broadband power spectrum. The approximate expression shows explicitly that the acoustic Power above the critical frequency is proportional to the blade number, independent of the solidity, and varies with frequency as ${\phi}_{ww}(\omega/W$), where ${\phi}_{ww}$ is the wavenumber spectrum of the turbulence velocity and W is mean-flow speed. The formulation is used to perform a parametric study on the effects on the power spectrum of the blade number stagger angle, gap-chord ratio and Mach number. The theory is also shown to provide a close fit to the measured spectrum of rotor-stator interaction when the mean square turbulence velocity and length-scale are chosen appropriately.

Numerical Prediction of Aerodynamic Noise from Rotors (회전익 공력소음의 수치적 예측)

  • 이정한;이수갑
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.581-587
    • /
    • 1997
  • Numerical predictions of aerodynamic noise radiated by subsonic rotors are carried out. A time domain approach for Ffowcs-Williams Hawkings equation of acoustic analogy is used in developing a comprehensive rotor/fan noise prediction program to handle both arbitrary blade shapes and loading conditions. Since only the aeroacoustic aspects of rotors are considered here, the calculations are carried out for rotors with simple aerodynamic characteristics. Broadband noise from ingestion of turbulence is also considered. By incorporating discrete frequency noise prediction of steady loading with broadband spectrum, much better correlation at the low frequency region with experimental data is obtaind. The contributions from different noise mechanisms can also be analysed through this method.

  • PDF

Prediction of Specific Noise Based on Internal Flow of Forward Curved Fan

  • Sasaki, Soichi;Hayashi, Hidechito;Hatakeyama, Makoto
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.1
    • /
    • pp.80-91
    • /
    • 2009
  • In this study, a prediction theory for specific noise that is the overall characteristic of the fan has been proposed. This theory is based on total pressure prediction and broadband noise prediction. The specific noises of two forward curved fans with different number of blades were predicted. The flow around the impeller having 120 blades (MF120) was more biased at a certain positions than the impeller with 40 blades (MF40). An effective domain of the energy conversion of MF40 has extended overall than MF120. The total pressure was affected by the slip factor and pressure loss caused by the vortex flow. The suppression of a major pressure drop by the vortex flow and expansion of the effective domain for energy conversion contributed to an increase in the total pressure of MF40 at the design point. The position of maximum relative velocity was different for each fan. The relative velocity of MF120 was less than that of MF40 due to the deviation angle. The specific noise of MF120 was 2.7 dB less than that of MF40 due to the difference in internal flow. It has been quantitatively estimated that the deceleration in the relative velocity contributed to the improvement in the overall performance.

Experimental Study of Trailing Edge Shape of Forward Curved Blade upon Radiated Noise (원심 전향익 송풍기 날개 후단의 형상에 따른 소음 분석)

  • KIM, H.-J.;JUNG, K.-H.;LEE, C.-J.;LEE, S.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.137-142
    • /
    • 2000
  • The turbulent broadband sound power from a forward curved bladed fan can be modeled by the trailing edge noise. The trailing edge noise is usually influenced by inflow turbulence, separation, and boundary layer on the blade. This paper reports the effects of the solidity (C/s) and the stagger angles upon the trailing edge noise with respect to the trailing edge shapes of circular-arc cambered blade of multi-bladed fan, and discusses the major physical mechanism of reduced noise lot the circular trailing-edged case.

  • PDF