• Title/Summary/Keyword: Fan Spray Nozzle

Search Result 21, Processing Time 0.04 seconds

Spray and Atomization Technologies in Pesticides Application: A Review

  • No, Soo-Young
    • Journal of ILASS-Korea
    • /
    • v.6 no.4
    • /
    • pp.1-13
    • /
    • 2001
  • In the pesticides sprays, spray and atomization technologies to increase the deposition and reduce the drift are briefly reviewed. Further research is needed to deduce a measure of drift risk in sprays with different structures, velocity profiles. For flat fan nozzles, the data of breakup length and thickness of liquid sheet are essential to understand the atomization processes and develop the transport model to target. In the air-assisted spray technology to reduce drift, further works on the effect of application height on drift and air assistance on droplet size should be followed. In addition, methods for quantifying included air in the air inclusion techniques are required. A few researches on the droplet size of fallout can be found in the literature. A combined technology with electrostatic method into one of method for the reduction of drift may be an effective strategy for increasing deposition and reducing drift.

  • PDF

Recent Developments in Agricultural Sprays : Review

  • No, S. Y.
    • Agricultural and Biosystems Engineering
    • /
    • v.3 no.1
    • /
    • pp.44-54
    • /
    • 2002
  • A brief review of current status in the field of agricultural spray and future research challenges are presented. Researches on the pesticides sprays, pollen sprays, postharvest sprays, and biological control agent sprays among the various applications of agricultural spray were selected and reviewed. In the agrochemical sprays, the techniques to increase the deposition such as electrospray and reduce the drift such as introductions of drift retardants and of mechanical means are reviewed. The introduction of mechanical means includes low drift, air-assisted, air inclusion, shield or shroud assisted and pulse flow nozzles. For flat fan nozzles, the data of breakup length and thickness of liquid sheet are essential to understand the atomization processes and develop the transport model to target In the air-assisted spray technology to reduce drift, further works on the effect of application height on drift and air assistance on droplet size should be followed. In addition, methods for quantifying the included air in the air inclusion techniques are required. The atomization characteristics of biopesticides spray are not being elucidated and the formulations of biopesticides should be taken into account the spray characteristics of existing nozzle and sprayer. A few researches on the droplet size of fallout can be found in the literature. A combined technology with electrostatic method into one of method for the reduction of drift may be an effective strategy for increasing deposition and reducing drift. Only an integrated approach involving all stakeholders such as engineers, chemists, and biologists, etc. can result in improved application of agricultural spray.

  • PDF

Effect of Pesticide Residues on Perilla Leaf by Nozzle Types of Knapsack Sprayers (배부식 분무기 노즐이 들깻잎의 농약잔류에 미치는 영향)

  • Son, Kyeong-Ae;Kang, Tae Kyeong;Park, Byeong Jun;Jin, Yong-Duk;Gil, Geun-Hwan;Kim, Chan Sub;Kim, Jin Bae;Im, Geon-Jae;Lee, Key-Woon
    • The Korean Journal of Pesticide Science
    • /
    • v.16 no.4
    • /
    • pp.282-287
    • /
    • 2012
  • This study was carried out to clarify the effects of the application of pesticide by different spray nozzle types on pesticide residues. The average droplet size and discharge rate were investigated when the manual compressed sprayer with two head disk type nozzle and the knapsack engine powered sprayer with two head fan shape nozzles were used. The fan type nozzles were classified into three types by the number of orifice in the nozzle. Three type nozzles tested were fan with one orifice, fan with two orifices and fan with three orifices. Fan (trade name : D-3) with 2.4 L/min. of the discharge rate and $76{\mu}m$ of the average droplet size while maintaining constant pressure $1.1{\pm}0.2$ MPa, and fan D-35 with 2.6 L/min. and $90{\mu}m$ while maintaining constant pressure $1.0{\pm}0.2$ MPa were appropriate. The orifice size of D-3 was 0.65 mm length ${\times}$ 0.45 mm width and the orifice size of D-35 was 0.62 mm length ${\times}$ 0.46 mm width. The residue levels of imidacloprid on perilla leaves among four applications by four different nozzles show significantly difference with 5% significance level. The residue levels $3.76{\sim}3.92mg\;kg^{-1}$ by fan or disk type is smaller than $4.52{\sim}4.92mg\;kg^{-1}$ by fan II or fan III. The residue levels of imidacloprid on perilla leaf were different depend on the spray nozzles type.

Effects of the Electrohydrodynamic Forces on Characteristics of Spray (전기수력학적 힘이 분무특성에 미치는 영향)

  • Lee, J.H.;Kwon, S.D.;Kim, S.H.;Moon, S.Y.;Lee, C.W.
    • Journal of ILASS-Korea
    • /
    • v.6 no.1
    • /
    • pp.44-51
    • /
    • 2001
  • The distributions of the SMD and behavior of 2% $NH_4H_2PO_4$ spray discharged from a fan-spray twin fluid type nozzle are measured and observed. The spray characteristics, according to the variation in the applied voltages, are demonstrated using the PMAS (particle Motion Analysis System) and the CCD camera, respectively. The preliminary experiments are executed to select an optimum condition for solidifying a galvanized coating layer in the uncharged condition before carrying out the main experiments. The liquid and air pressure of $0.07kgf/cm^2\;and\;0.15kgf/cm^2$ can be considered the optimum conditions to use in the main experiment. As the applied voltage increases, the frequent range of relatively large droplets diminishes. Thus, the distributions of drop diameter in the charged spray are more uniform than these in the uncharged condition. This is explained by recognizing that repulsive forces among droplets with the charges of the same sign cause them to be uniform.

  • PDF

Numerical Analysis on the Improvement of Zinc Plating Booth Ventilation System (아연도금 부스 환기시스템 개선에 관한 수치해석)

  • Chin, Do-Hun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.1
    • /
    • pp.45-51
    • /
    • 2021
  • The purpose of this study is to suggest the optimal shape for a local air ventilation system for fume removal, which is operated in a zinc galvanizing factory, and to propose the improvement plan for a ventilation system used in a zinc galvanizing factory through flow analysis. A part of the air sprayed by an air curtain goes out. It will be necessary to research the position of an air curtain, its spray angles, and its nozzle shape. In addition, additional research needs to be conducted on the shape of the fan installed before a hood in order to make it easy to induce fume. In a local air ventilation system, air is inhaled from the outside. The higher an inlet negative pressure is, the easier fume is removed. It was found that it was necessary to install an appropriate hole in the wall on the back of a push nozzle in order to reduce an inlet negative pressure.

A Study on the Performance of Heat Exchanger for Closed Cooling Tower (밀폐식 냉각탑용 열교환기의 성능에 관한 연구)

  • Lee, Sang-Sik;Yoo, Seong-Yeon;Kim, Jin-Hyuck;Ahn, Young-Hwan;Park, Hyoung-Joon;Ryu, Hae-Sung
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.334-339
    • /
    • 2008
  • An closed cooling tower is a device similar to a general cooling tower, but with cooling tower replaced by a heat exchanger. The purpose of this study is to evaluate thermal performance of heat exchanger at various conditions and to provide design datebase. The experimental study regarding heat exchanger for closed cooling tower was conducted. Experimental apparatus consists of constant temperature bath, water pump, spray nozzle, heat exchanger, fan, and date acquisition system. Heat transfer rates at various air velocitys, water flow rates, two different spray modes were measured and heat transfer coefficient were calculated to compare the thermal performances. This study provides that the heat transfer coefficient increases with increasing spray water flow rate and with increasing air velocity. The wet mode was more effective than dry mode for closed cooling tower to this study.

  • PDF

Aerosol Jet Deposition of $CuInS_2$ Thin Films

  • Fan, Rong;Kong, Seon-Mi;Kim, Dong-Chan;Chung, Chee-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.159-159
    • /
    • 2011
  • Among the semiconductor ternary compounds in the I-III-$VI_2$ series, $CulnS_2$ ($CulnSe_2$) are one of the promising materials for photovoltaic applications because of the suitability of their electrical and optical properties. The $CuInS_2$ thin film is one of I-III-$VI_2$ type semiconductors, which crystallizes in the chalcopyrite structure. Its direct band gap of 1.5 eV, high absorption coefficient and environmental viewpoint that $CuInS_2$ does not contain any toxic constituents make it suitable for terrestrial photovoltaic applications. A variety of techniques have been applied to deposit $CuInS_2$ thin films, such as single/double source evaporation, coevaporation, rf sputtering, chemical vapor deposition and chemical spray pyrolysis. This is the first report that $CuInS_2$ thin films have been prepared by Aerosol Jet Deposition (AJD) technique which is a novel and attractive method because thin films with high deposition rate can be grown at very low cost. In this study, $CuInS_2$ thin films have been prepared by Aerosol Jet Deposition (AJD) method which employs a nozzle expansion. The mixed fluid is expanded through the nozzle into the chamber evacuated in a lower pressure to deposit $CuInS_2$ films on Mo coated glass substrate. In this AJD system, the characteristics of $CuInS_2$ films are dependent on various deposition parameters, such as compositional ratio of precursor solution, flow rate of carrier gas, stagnation pressure, substrate temperature, nozzle shape, nozzle size and chamber pressure, etc. In this report, $CuInS_2$ thin films are deposited using the deposition parameters such as the compositional ratio of the precursor solution and the substrate temperature. The deposited $CuInS_2$ thin films will be analyzed in terms of deposition rate, crystal structure, and optical properties.

  • PDF

Cooling Effect of Air in Greenhouse Using A Fog Sprayer Consisted of Two-fluid Nozzle with Turbo Fan (터보 팬 2류체 노즐로 구성한 포그 분무장치를 이용한 온실 내 공기의 냉각 효과)

  • Kim, Tae-Kyu;Min, Young-Bong;Kim, Do-Wan;Kim, Myung-Kyu;Moon, Sung-Dong;Chung, Tae-Sang
    • Journal of agriculture & life science
    • /
    • v.46 no.3
    • /
    • pp.119-127
    • /
    • 2012
  • For the promotion of the evaporative cooling efficiency of hot air in greenhouse in summer, a fog sprayer consisted of a high volume spraying two-fluid nozzle with turbo fan and a blowing fan was set up at 2.2 m height from bottom of small glass greenhouse and tested to estimate the possibility of the greenhouse cooling. The mean droplet size and the volume sprayed by one of fog sprayer were $29{\mu}m$ and $160m{\ell}/min$. All the droplets sprayed and blown by the fog sprayer were evaporated within 2 m radius. The result from the cooling test that two sprayers set up in glass greenhouse of plane area $228m^2$ was represented lower cooling effect that the temperature and relative humidity of inside air of greenhouse were $28.8^{\circ}C$ and 87.5% when those of outside air of greenhouse were $30.2^{\circ}C$ and 81.2%. Through investigation of literatures and results of the cooling test, it was estimated that the water spraying rate of evaporative cooling of single span greenhouse with 50% light curtain and with air change rate of 1 volume/min was $10m{\ell}/min/m^2$ so that the inside air temperature may cool down $2{\sim}3^{\circ}C$ on the basis of $35^{\circ}C$ atmospheric temperature in summer of south korean area.

Performance of Heat Recovery System using Evaporative Cooling (증발냉각을 이용한 배기열 회수장치의 성능에 관한 연구)

  • Yoo, Seong Yeon;Kim, Tae Ho;Kim, Myung Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.1
    • /
    • pp.37-43
    • /
    • 2015
  • Evaporative cooling is a very effective way for exhaust heat recovery that uses both latent heat and sensible heat. This study investigated the performance of a heat recovery system using evaporative cooling. The experimental apparatus comprised a plastic heat exchanger, a water spray nozzle, an air blowing fan, a water circulation pump, and measuring sensors for the temperature, humidity, and flow rate. The effectiveness of the sensible heat recovery without evaporation was measured and compared with that of the total heat recovery with evaporation. The effectiveness of the sensible and total heat recoveries decreased as the air flow rate increased, and a much higher effectiveness was obtained with the counterflow arrangement in both cases. For total heat recovery, the effectiveness increased with the water flow rate, and the parallel flow arrangement was found to be more sensitive to the water flow rate than the counterflow arrangement.

Prediction of Cooling Performance for Indirect Evaporative Cooling System Using Danpla Sheet (단프라시트를 적용한 간접식 증발냉각 장치의 냉각 성능 예측)

  • Kim, Myung-Ho;Kim, Byoung Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.892-897
    • /
    • 2020
  • Previous plastic heat exchangers are expensive because the mold must be newly manufactured depending on the air conditioning space. On the other hand, danpla is so thin that the heat exchange performance is excellent. Moreover, danpla can be used easily in ventilation systems in view of fabrication. This study proposes correlations for the cooling performance of an indirect evaporative cooling system. The experimental apparatus consisted of a heat exchanger, spray nozzle, fan, thermostat, pump, and measuring sensors for temperature, humidity, and airflow rate. The results showed that the effectiveness decreased gradually as the airflow rate increased. In addition, there was an optimal condition in terms of effectiveness. The performance prediction correlations were determined using the experimental data from various conditions. The proposed correlations showed performance accuracies within 4 % error.