• Title/Summary/Keyword: Family dynamic

Search Result 152, Processing Time 0.022 seconds

Practice of Everyday Life Proprieties, Dynamics of Family Systems, and Psychological Well-Being Among Married Couples (도시부부의 생활예절수행, 가족체계역동성 및 심리적 복지감에 관한 연구)

  • 김연화;이정우
    • Journal of Families and Better Life
    • /
    • v.21 no.2
    • /
    • pp.1-18
    • /
    • 2003
  • In recent years, Korean society has witnessed an increased interest in the observance of everyday life proprieties, building healthy families, and psychological well-being of family members. The main purpose of this research was to examine the relationships among the practice of everyday life proprieties, dynamics of family systems, and psychological well-being of Korean married couples. A self-report Questionnaire was used to collect data from married couples with a child over four-years-old who are currently residing in Seoul. 513 couples(1026 individuals) were used for the final data analysis. Statistical analyses were conducted using frequencies, percentages, means, standard deviations, Cronbach'α, Pearson correlation, paired t-test, factor analysis, and multiple regression. The findings of this study are as follows: First, the level of the practice of everyday life propriety was relatively high in both husbands and wives, and no significant gender difference was found in the level. Yet, there were some statistically significant differences in certain sub-dimensions. Wives showed a higher degree of performance in public decorum and social etiquette, whereas husbands exhibited a higher degree of performance in family decorum and communication manners. The family systems were highly dynamic, according to both husbands and wives, and there was no difference between husbands and wives. As for the sub-dimensions, the extent of communication was found to be higher among husbands than among wives. Psychological well-being was again relatively high for both husbands and wives, with husbands significantly higher than wives. Second, the findings indicate that the causal model did fit the data well, and that a myriad of background variables had direct and indirect impacts on psychological well-being, and these relationships were mediated by several variables in the sub-dimension of proprieties observance, family adaptability, and the degree of communication. The implication is that the practice of life propriety, an intervening variable, is crucial in improving psychological well-being of married couples. The findings of this research demonstrate that there are significant causal relationships among the practice of everyday life propriety, family systems dynamics, and psychological well-being. In addition, the observance of proprieties is shown to be a concept that can be used as an important predictor in the area of family resource management. Further research is needed to expand its focus on the practice of proprieties in the family resource management. More concrete and specialized family life education programs should be developed to help build healthy families. Lastly, the results indicate that proprieties education needs to be incorporated in family policies in order to promote the quality of family life.

Optimal Cooling Operation of a Single Family House Model Equipped with Renewable Energy Facility by Linear Programming (신재생에너지 단독주택 모델 냉방운전의 선형계획법 기반 운전 최적화 연구)

  • Shin, Younggy;Kim, Eui-Jong;Lee, Kyoung-ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.12
    • /
    • pp.638-644
    • /
    • 2017
  • Optimal cooling operation algorithm was developed based on a simulation case of a single family house model equipped with renewable energy facility. EnergyPlus simulation results were used as virtual test data. The model contained three energy storage elements: thermal heat capacity of the living room, chilled water storage tank, and battery. Their charging and discharging schedules were optimized so that daily electricity bill became minimal. As an optimization tool, linear programming was considered because it was possible to obtain results in real time. For its adoption, EnergyPlus-based house model had to be linearly approximated. Results of this study revealed that dynamic cooling load of the living room could be approximated by a linear RC model. Scheduling based on the linear programming was then compared to that by a nonlinear optimization algorithm which was made using GenOpt developed by a national lab in USA. They showed quite similar performances. Therefore, linear programming can be a practical solution to optimal operation scheduling if linear dynamic models are tuned to simulate their real equivalents with reasonable accuracy.

Dynamic Interaction between Conditional Stock Market Volatility and Macroeconomic Uncertainty of Bangladesh

  • ALI, Mostafa;CHOWDHURY, Md. Ali Arshad
    • Asian Journal of Business Environment
    • /
    • v.11 no.4
    • /
    • pp.17-29
    • /
    • 2021
  • Purpose: The aim of this study is to explore the dynamic linkage between conditional stock market volatility and macroeconomic uncertainty of Bangladesh. Research design, data, and methodology: This study uses monthly data covering the time period from January 2005 to December 2018. A comprehensive set of macroeconomic variables, namely industrial production index (IP), consumer price index (CPI), broad money supply (M2), 91-day treasury bill rate (TB), treasury bond yield (GB), exchange rate (EX), inflow of foreign remittance (RT) and stock market index of DSEX are used for analysis. Symmetric and asymmetric univariate GARCH family of models and multivariate VAR model, along with block exogeneity and impulse response functions, are implemented on conditional volatility series to discover the possible interactions and causal relations between macroeconomic forces and stock return. Results: The analysis of the study exhibits time-varying volatility and volatility persistence in all the variables of interest. Moreover, the asymmetric effect is found significant in the stock return and most of the growth series of macroeconomic fundamentals. Results from the multivariate VAR model indicate that only short-term interest rate significantly influence the stock market volatility, while conditional stock return volatility is significant in explaining the volatility of industrial production, inflation, and treasury bill rate. Conclusion: The findings suggest an increasing interdependence between the money market and equity market as well as the macroeconomic fundamentals of Bangladesh.

Yield mechanisms of stepped cantilevers subjected to a dynamically applied constant tip force

  • Wang, B.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.5
    • /
    • pp.445-462
    • /
    • 1995
  • Previous studies of a stepped cantilever with two straight segments under a suddenly applied constant force (a step load) applied at its tip have shown that the validity of deformation mechanisms is governed by certain geometrical restrictions. Single and double-hinge mechanisms have been proposed and it is shown in this paper that for a stepped cantilever with a stronger tip segment, i.e. $M_{0.1}$ > $M_{0.2}$, where $M_{0.1}$ and $M_{0.2}$ are the dynamic fully plastic bending moments of the tip and root segments, respectively, the family of possible yield mechanisms is expanded by introducing new double and triple-hinge mechanisms. With the aid of these mechanisms, it is shown that all initial deformations can be derived for a stepped cantilever regardless of its geometry and the magnitude of the dynamic force applied.

Dynamic stability of a metal foam rectangular plate

  • Debowski, D.;Magnucki, K.;Malinowski, M.
    • Steel and Composite Structures
    • /
    • v.10 no.2
    • /
    • pp.151-168
    • /
    • 2010
  • The subject of the paper is an isotropic metal foam rectangular plate. Mechanical properties of metal foam vary continuously through plate of the thickness. A nonlinear hypothesis of deformation of plane cross section is formulated. The system of partial differential equations of the plate motion is derived on the basis of the Hamilton's principle. The system of equations is analytically solved by the Bubnov-Galerkin method. Numerical investigations of dynamic stability for family rectangular plates with respect analytical solution are performed. Moreover, FEM analysis and theirs comparison with results of numerical-analytical calculations are presented in figures.

A dissipative family of eigen-based integration methods for nonlinear dynamic analysis

  • Chang, Shuenn-Yih
    • Structural Engineering and Mechanics
    • /
    • v.75 no.5
    • /
    • pp.541-557
    • /
    • 2020
  • A novel family of controllable, dissipative structure-dependent integration methods is derived from an eigen-based theory, where the concept of the eigenmode can give a solid theoretical basis for the feasibility of this type of integration methods. In fact, the concepts of eigen-decomposition and modal superposition are involved in solving a multiple degree of freedom system. The total solution of a coupled equation of motion consists of each modal solution of the uncoupled equation of motion. Hence, an eigen-dependent integration method is proposed to solve each modal equation of motion and an approximate solution can be yielded via modal superposition with only the first few modes of interest for inertial problems. All the eigen-dependent integration methods combine to form a structure-dependent integration method. Some key assumptions and new techniques are combined to successfully develop this family of integration methods. In addition, this family of integration methods can be either explicitly or implicitly implemented. Except for stability property, both explicit and implicit implementations have almost the same numerical properties. An explicit implementation is more computationally efficient than for an implicit implementation since it can combine unconditional stability and explicit formulation simultaneously. As a result, an explicit implementation is preferred over an implicit implementation. This family of integration methods can have the same numerical properties as those of the WBZ-α method for linear elastic systems. Besides, its stability and accuracy performance for solving nonlinear systems is also almost the same as those of the WBZ-α method. It is evident from numerical experiments that an explicit implementation of this family of integration methods can save many computational efforts when compared to conventional implicit methods, such as the WBZ-α method.

Self-timed Current-mode Logic Family having Low-leakage Current for Low-power SoCs (저 전력 SoC를 위한 저 누설전류 특성을 갖는 Self-Timed Current-Mode Logic Family)

  • Song, Jin-Seok;Kong, Jeong-Taek;Kong, Bai-Sun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.8
    • /
    • pp.37-43
    • /
    • 2008
  • This paper introduces a high-speed low-power self-timed current-mode logic (STCML) that reduces both dynamic and leakage power dissipation. STCML significantly reduces the leakage portion of the power consumption using a pulse-mode control for shorting the virtual ground node. The proposed logic style also minimizes the dynamic portion of the power consumption due to short-circuit current by employing an enhanced self-timing buffer. Comparison results using a 80-nm CMOS technology show that STCML achieves 26 times reduction on leakage power consumption and 27% reduction on dynamic power consumption as compared to the conventional current-mode logic. They also indicate that up to 59% reduction on leakage power consumption compared to differential cascode voltage switch logic (DCVS).

Generation of Floor Response Spectra including Equipment-Structure Interaction in Frequency Domain (진동수 영역에서 기기-구조물 상호작용을 고려한 층응답스펙트럼의 작성)

  • Choi, Dong-Ho;Lee, Sang-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.6 s.46
    • /
    • pp.13-19
    • /
    • 2005
  • Floor response spectra for dynamic response of subsystem such as equipment, or piping in nuclear power plants are usually generated without considering dynamic interaction between main structure and subsystem. This study describes the analytic method in which equipment response spectra can be obtained through dynamic analysis considering equipment-structure Interaction(ESI). In this method, dynamic response of the equipment by this method is based on a dynamic substructure method in which the equipment-structure system is partitioned into the single-degree-ol-freedom system(SDOF) representing the equipment and the equipment support impedance representing the dynamic charactenstics of the structure ai the equipment support. A family of equipment response spectra is developed by applying this method to calculate the maximum responses of a family of SDOF equipment systems with wide banded equipment frequency, damping ratio, and mass. The method is validated by comparing the floor response spectrum from this method with the floor response spectrum generated from the rigorous analysis including equipments on the containment building of a prototypical nuclear power plant. in order to Investigate ESI effect in the response of equipment, response values from the method and the conventional approach without considering ESI are compared for the equipment having the mass less than 1% of the total structural mass. Response spectra from the method showed lower spectral amplitudes than those of the conventional floor response spectra around controlling frequencies.

Dynamic analysis of frames with viscoelastic dampers: a comparison of damper models

  • Lewandowski, R.;Bartkowiak, A.;Maciejewski, H.
    • Structural Engineering and Mechanics
    • /
    • v.41 no.1
    • /
    • pp.113-137
    • /
    • 2012
  • Frame structures with viscoelastic (VE) dampers mounted on them are considered in this paper. It is the aim of this paper to compare the dynamic characteristics of frame structures with VE dampers when the dampers are modelled by means of different models. The classical rheological models, the model with the fractional order derivative, and the complex modulus model are used. A relatively large structure with VE dampers is considered in order to make the results of comparison more representative. The formulae for dissipation energy are derived. The finite element method is used to derive the equations of motion of the structure with dampers and such equations are written in terms of both physical and state-space variables. The solution to motion equations in the frequency domain is given and the dynamic properties of the structure with VE dampers are determined as a solution to the appropriately defined eigenvalue problem. Several conclusions concerning the applicability of a family of models of VE dampers are formulated on the basis of results of an extensive numerical analysis.

Dynamic Behaviors and Optimal Design of an Aircraft Nose Landing Gear using ADAMS (ADAMS를 이용한 항공기 전륜착륙장치의 동적거동해석 및 최적설계)

  • Kim, Sun-Goo;Kim, Cheol;Kim, Young-Man
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.7
    • /
    • pp.612-618
    • /
    • 2007
  • The dynamic behaviors of a KT-1 family aircraft nose landing gear have been analyzed and the optimal design of an aircraft shock absorber has been conducted to improve efficiency of shock energy absorption. The nose landing gear is modeled as a 2 DOF system using ADAMS and various operational and environmental landing conditions were considered. The results of dynamic simulation for various landing conditions agree well with experiments. Also the effect of parameters of a shock strut on the dynamic behaviors and on shock energy absorption of the nose landing gear has been evaluated for optimal design to define design variables. It has been found that the parameters of a shock strut such as oil-density and orifice area have more effects on dynamic behaviors than those of operation conditions. Optimal design is performed to maximize the efficiency of shock energy absorption using Feasible Direction Method. As a result the design values of the shock strut for maximum efficiency of shock energy absorption are derived and it turns out that efficiency and dynamic behaviors of the nose landing gear were improved by the optimal design.