본 논문에서는 대규모 다중처리기 시스템에서 다중쓰레드를 지원하는 기법에 관하여 다룬다. 분산공유메로리에서의 주소번역표 관리, 블록 일관성 유지 방법, 그리고 블록 대치 정책에 대하여 쓰레드 프로그래밍 환경에 적합한 새로운 기법을 제안한다. 이 기법은 분산공유메모리에서 일반적으로 발생하는 문제점들인 거짓 공유, 불필요한 중복, 블록 바운싱, 그리고 주소 엘리어싱 등을 효율적으로 해결한다. 그리고 응용프 로그램의 투명성을 제공하고, 시스템의 확장과 구현 용이하도록 해주며, 다중쓰레드 환경을 사용자에서 제공한다.
적응 CFAR(Constant False Alarm Rate) 알고리즘은 클러터 배경 환경에서 일정한 오경보 율을 유지하면서 탐지확률을 높이기 위해 사용된다. 특히 공간 상관관계, 크기 편차가 큰 비 균일한 클러터 환경에서 탐지성능을 향상시키기 위해서는 공간변화에 적응적인 필터링 기법이 요구된다. 본 논문에서는 클러터 배경추정을 위해 이차원적으로 영역을 구분하여 대표 추정 값을 구하고, 보간(interpolation) 필터를 이용하여 최종 추정 값을 결정하는 이차원 블록 보간(Two-dimensional Block Interpolation : TBI) 적응 CFAR 알고리즘을 제안한다. 제안한 방법은 부분영역의 히스토그램 분포 중앙값을 영역 추정 값으로 선택함으로 불규칙 간섭신호 제거에 효과적이며, 블록 노드 추정 값을 이용하여 각 셀에 대한 최종 추정 값을 얻는 방식을 취함으로 인해 거리 셀 수가 많고, 고도 빔 수가 많은 시스템에서 클러터 필터링에 필요한 메모리 공간을 줄이는데 이점이 있다. 컴퓨터 모의실험을 통해 기존의 트랜스버설(transversal) 방식, 회귀(recursive)방식의 적응 CFAR 알고리즘과 탐지성능, 필요메모리 측면에서 성능을 비교하여 제안한 방법의 우수성을 확인한다.
Selectivity estimation for spatial query is very important process in finding the most efficient execution plan. Many works have been performed to estimate accurately selectivity. Although they deal with some problems such as false-count, multi-count, they require a large amount of memory to retain accurate selectivity, so they can not get good results in little memory environments such as mobile-based small database. In order to solve this problem, we propose a new technique called MW histogram which is able to compress summary data and get reasonable results. It also has a flexible structure to react dynamic update. The experimental results showed that the MW histogram has lower relative error than MinSkew histogram and gets a good selectivity in little memory.
This experiment has investigated the influence of Yamen (Du. 15) point injection on learning and memory dysfunction caused by cerebral ischemia and reprofusion in bilateral cervical general artery combined with bleeding on mouse tail to mimic vascular dementia in human beings. By dividing 40 mice into 4 groups (group1false operation group, group2model group, group3point injection with Cerebrolysin group4point injection with saline.) According to random dividing principles, we observed the influence of Yamen(Du. 15) point injection on the time of swimming the whole course used by model mice which had received treatment for different days in different groups, and the influence of those mice on wrong times they entered blind end. The result showed that point injection with Cerebrolysin and saline could improve learning and memory dysfunction of the mice caused by cerebral ischemia.
Selectivity estimation for spatial query is curial in Spatial Database Management Systems(SDBMS). Many works have been performed to estimate accurate selectivity. Although they deal with some problems such as false-count, multi-count arising from properties of spatial dataset, they can not get such effects in little memory space.* Therefore, we need to compress spatial dataset into little memory. In this paper, we propose a new technique called MW Histogram which is able to compress summary data and get reasonable results. Our method is based on two techniques:(a)MinSkew partitioning algorithm which deal with skewed spatial datasets. efficiently (b) Wavelet transformation which compression effect is proven. We evaluate our method via real datasets. The experimental result shows that the MW Histogram has the ability of providing estimates with low relative error and retaining the similar estimates even if memory space is small.
Purpose - The purpose of paper is studying the static and dynamic side for long-term memory storage properties, and increase the explanatory power regarding the long-term memory process by looking at the long-term storage attributes, Korea Composite Stock Price Index. The reason for the use of GPH statistic is to derive the modified statistic Korea's stock market, and to research a process of long-term memory. Research design, data, and methodology - Level shifts were subjected to be an empirical analysis by applying the GPH method. It has been modified by taking into account the daily log return of the Korea Composite Stock Price Index a. The Data, used for the stock market to analyze whether deciding the action by the long-term memory process, yield daily stock price index of the Korea Composite Stock Price Index and the rate of return a log. The studies were proceeded with long-term memory and long-term semiparametric method in deriving the long-term memory estimators. Chapter 2 examines the leading research, and Chapter 3 describes the long-term memory processes and estimation methods. GPH statistics induced modifications of statistics and discussed Whittle statistic. Chapter 4 used Korea Composite Stock Price Index to estimate the long-term memory process parameters. Chapter 6 presents the conclusions and implications. Results - If the price of the time series is generated by the abnormal process, it may be located in long-term memory by a time series. However, test results by price fixed GPH method is not followed by long-term memory process or fractional differential process. In the case of the time-series level shift, the present test method for a long-term memory processes has a considerable amount of bias, and there exists a structural change in the stock distribution market. This structural change has implications in level shift. Stratum level shift assays are not considered as shifted strata. They exist distinctly in the stock secondary market as bias, and are presented in the test statistic of non-long-term memory process. It also generates an error as a long-term memory that could lead to false results. Conclusions - Changes in long-term memory characteristics associated with level shift present the following two suggestions. One, if any impact outside is flowed for a long period of time, we can know that the long-term memory processes have characteristic of the average return gradually. When the investor makes an investment, the same reasoning applies to him in the light of the characteristics of the long-term memory. It is suggested that when investors make decisions on investment, it is necessary to consider the characters of the long-term storage in reference with causing investors to increase the uncertainty and potential. The other one is the thing which must be considered variously according to time-series. The research for price-earnings ratio and investment risk should be composed of the long-term memory characters, and it would have more predictability.
코드 재사용 공격은 프로그램 메모리상에 존재하는 실행 가능한 코드 조각을 조합하고, 이를 연속적으로 실행함으로써 스택에 직접 코드를 주입하지 않고도 임의의 코드를 실행시킬 수 있는 공격 기법이다. 코드 재사용 공격의 대표적인 종류로는 ROP(Return-Oriented Programming) 공격이 있으며, ROP 공격에 대응하기 위한 여러 방어기법들이 제시되어왔다. 그러나 기존의 방법들은 특정 규칙을 기반으로 공격을 탐지하는 Rule-base 방식을 사용하기 때문에 사전에 정의한 규칙에 해당되지 않는 ROP 공격은 탐지할 수 없다는 한계점이 존재한다. 본 논문에서는 RNN(Recurrent Neural Network)을 사용하여 ROP 공격 코드에 사용되는 명령어 패턴을 학습하고, 이를 통해 ROP 공격을 탐지하는 방법을 소개한다. 또한 정상 코드와 ROP 공격 코드 판별에 대한 False Positive Ratio, False Negative Ratio, Accuracy를 측정함으로써 제안한 방법이 효과적으로 ROP 공격을 탐지함을 보인다.
통신 오버헤드 및 거짓 공유(false sharing)등의 문제를 해결하기 위하여 소프트웨어 분산공유메모리 시스템을 위한 다양한 메모리 모델등이 제안되었다. HLRC(Home based Lazy Release)[1]는 Keleher에 의해 제안된 LRC[2] 모델에 home 개념을 도입한 모델로서 최근의 소프트웨어 분산공유 메모리 시스템에서 널리 채용되고 있다. 본 논문에서는 HLRC 모델을 기반으로 한 메모리 일관성 프로토콜의 설계, 구현, 그리고 성능 측정 결과에 관하여 기술한다.
In this study event-related optical signals were extracted from the prefrontal cortexes using functional near infrared spectroscopy while subjects were carrying out 2-back working memory tasks. Four events such as start, yes, no, and error were considered based on the onsets of the stimulus, positive true responses, positive false responses, and negative responses in the 2-back working memory task, respectively. The optical signals recorded were analyzed by peri-event histograms and power spectrum distributions. The results showed specific characteristics of the event-related optical neuronal signals and an opened possibility of an application to control a non-invasive brain-computer interface system or an object of a virtual reality.
A number of sensing techniques have been implemented for detecting defects in civil infrastructures instead of onsite human inspections in structural health monitoring. However, the issue of faults in sensors has not received much attention. This issue may lead to incorrect interpretation of data and false alarms. To overcome these challenges, this article presents a deep learning-based method with a new architecture of Stateful Long Short Term Memory Neural Networks (S-LSTM NN) for detecting sensor fault without going into details of the fault features. As LSTMs are capable of learning data features automatically, and the proposed method works without an accurate mathematical model. The detection of four types of sensor faults are studied in this paper. Non-stationary acceleration responses of a three-span continuous bridge when under operational conditions are studied. A deep network model is applied to the measured bridge data with estimation to detect the sensor fault. Another set of sensor output data is used to supervise the network parameters and backpropagation algorithm to fine tune the parameters to establish a deep self-coding network model. The response residuals between the true value and the predicted value of the deep S-LSTM network was statistically analyzed to determine the fault threshold of sensor. Experimental study with a cable-stayed bridge further indicated that the proposed method is robust in the detection of the sensor fault.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.