International Journal of Internet, Broadcasting and Communication
/
v.12
no.2
/
pp.120-126
/
2020
Studies are being conducted regarding falling recognition using sensors on smartphonesto recognize falling in human daily life. These studies use a number of sensors, mostly acceleration sensors, gyro sensors, motion sensors, etc. Falling recognition system processes the values of sensor data by using a falling recognition algorithm and classifies behavior based on thresholds. If the threshold is ambiguous, the accuracy will be reduced. To solve this problem, Deep learning was introduced in the behavioral recognition system. Deep learning is a kind of machine learning technique that computers process and categorize input data rather than processing it by man-made algorithms. Thus, in this paper, we propose a falling recognition application system using deep learning based on smartphones. The proposed system is powered by apps on smartphones. It also consists of three layers and uses DataBase as a Service (DBaaS) to handle big data and address data heterogeneity. The proposed system uses deep learning to recognize the user's behavior, it can expect higher accuracy compared to the system in the general rule base.
Park, Geun-Chul;Jeon, A-Young;Lee, Sang-Hoon;Son, Jung-Man;Kim, Myoung-Chul;Jeon, Gye-Rok
Journal of Sensor Science and Technology
/
v.22
no.1
/
pp.54-64
/
2013
In this study, we developed a falling recognition system to transmit SMS data through CDMA communication using a three axises acceleration sensor and a two axises gyro sensor. 5 healthy men were selected into a control group, and the fall recognition system using the three axises acceleration sensor and the two axises gyro sensor was devised to conduct an experiment. The system was attached to the upper of their sternum. According to the experiment protocol, the experiment was carried out 3 times repeatedly divided into 3 specific protocols: falling during gait, falling in stopped state, and falling in everyday life. Data obtained in the falling recognition system and LabVIEW 8.5 were used to decide if falling corresponds to that regulated in an analysis program applying an algorithm proposed in this study. In addition, results from falling recognition were transmitted to designated cellular phone in a SMS (Shot Message Service) form. These research results show that an erroneous detection rate of falling reached 19% in applying an acceleration signal only; 6% in applying an angular velocity; and 2% in applying a proposed algorithm. Such finding suggests that an erroneous detection rate of falling is improved when the proposed algorithm is applied incorporated with acceleration and angular velocity. In this study therefore, we proposed that a falling recognition system implemented in this study can make a contribution to the recognition of falling of the aged or the disabled.
International Journal of Internet, Broadcasting and Communication
/
v.9
no.4
/
pp.44-50
/
2017
To understand whether Falling, which is one of the causes of injuries, occurs, various behavior recognition research is proceeding. However, in most research recognize only the fact that Falling has occurred and provide the service. As well as the occurrence of the Falling, the risk varies greatly based on the type of Falling and the situation before and after the Falling. Therefore, when Falling occurs, it is necessary to infer the user's current situation and provide appropriate services. In this paper, we propose to base on Fog Computing and Cloud Computing to design Context-aware System using analysis of behavior data and process sensor data in real-time. This system solved the problem of increase latency and server overload due to large capacity sensor data.
International Journal of Internet, Broadcasting and Communication
/
v.10
no.3
/
pp.42-50
/
2018
The majority of existing falling recognition techniques provide service by recognizing only that the falling occurred. However, it is important to recognize not only the occurrence of falling but also the situation before and after the falling, as well as the location of the falling. In this paper, we design and propose the falling notification service system to recognize and provide service. This system uses the acceleration sensor of the smartphone to recognize the occurrence of a falling and the situation before and after the falling. In order to check the location of falling, GPS sensor data is used in the Google Map API to map to the map. Also, a crosswalk map converted into grid-based coordinates based on the longitude and latitude of the crosswalk is stored, and the locations before and after falling are mapped. In order to reduce the connection speed and server overload for real-time data processing, fog computing and cloud computing are designed to be distributed processing.
The real-time monitoring about the activity of the human provides useful information about the activity quantity and ability. The present study implemented a small-size and low-power acceleration monitoring system for convenient monitoring of activity quantity and recognition of emergent situations such as falling during daily life. For the wireless transmission of acceleration sensor signal, we developed a wireless transmission system based on a wireless sensor network. In addition, we developed a program for storing and monitoring wirelessly transmitted signals on PC in real-time. The performance of the implemented system was evaluated by assessing the output characteristic of the system according to the change of posture, and parameters and acontext recognition algorithm were developed in order to monitor activity volume during daily life and to recognize emergent situations such as falling. In particular, recognition error in the sudden change of acceleration was minimized by the application of a falling correction algorithm
Recently, deep learning-based image recognition systems have been adopted to various surveillance environments, but most of them are still picture-type object recognition methods, which are insufficient for the long term temporal analysis and high-dimensional situation management. Therefore, we propose a method recognizing the specific dangerous situation generated by human in real-time, and utilizing deep learning-based object analysis techniques. The proposed method uses deep learning-based object detection and tracking algorithms in order to recognize the situations such as 'trespassing', 'loitering', and so on. In addition, human's joint pose data are extracted and analyzed for the emergent awareness function such as 'falling down' to notify not only in the security but also in the emergency environmental utilizations.
Sang-min Choi;Min-gyun Kim;Seung-yeop Lee;Seong-Kyoo Kim;Jae-wook Shin;Woo-jin Kim;Seong-oh Choo;Yang-woo Park
Proceedings of the Korean Society of Computer Information Conference
/
2023.07a
/
pp.451-452
/
2023
고속도로에 낙하물이 있으면 사고 방지를 위해 바로 치워야 하지만 순찰차가 발견하거나 신고가 들어오기 전까진 낙하물을 바로 발견하기 힘들며, 대다수의 사람들은 신고하지 않고 지나치는 경우가 있기에 이러한 문제점들을 개선하기 위해 드론과 YOLO를 이용하여 도로의 낙하물을 인식하고 낙하물에 대한 정보를 보내 줄 수 있는 시스템을 개발하였다. 실시간 객체 인식 알고리즘인 YOLOv5를 데스크톱 PC에 적용하여 구현하였고, F450 프레임에 픽스호크와 모듈, 카메라를 장착하여 실시간으로 도로를 촬영할 수 있는 드론을 직접 제작하였다. 개발한 시스템은 낙하물에 대한 인식 결과와 정보를 제공하며 지상관제 시스템과 웹을 통해 확인할 수 있다. 적은 인력으로 더 빠르게 낙하물을 발견할 수 있으므로 빠른 상황 조치를 기대할 수 있다.
Journal of Institute of Control, Robotics and Systems
/
v.9
no.4
/
pp.304-309
/
2003
Uninterrupted power supply has become indispensable during the maintenance task of active electric power lines as a result of today's highly information-oriented society and increasing demand of electric utilities. The maintenance task has the risk of electric shock and the danger of falling from high place. Therefore it is necessary to realize an autonomous robot system. In order to realize these tasks autonomously, the three dimensional position of target object such as electric line and the stand of insulator must be recognized accurately and rapidly. The approaching of an insulator and the wrenching of a nut task is selected as the typical task of the maintenance of active electric power distribution lines in this paper. Image recognition by multilayer neural network and optimal target position calculation method are newly proposed in order to recognize the center 3 dimensional position of the bolt hole in the stand of insulator. By the proposed image recognition method, it is proved that the center 3 dimensional position of the bolt hole can be recognized rapidly and accurately without regard to the pose of the stand of insulator. Finally the approaching and wrenching task is automatically realized using 6-link electro-hydraulic manipulators.
KIPS Transactions on Computer and Communication Systems
/
v.10
no.1
/
pp.1-6
/
2021
Recently, incidents such as proxy surgery (unlicensed medical practice) have been reported in the media that threaten the safety of patients. Alternatives such as the introduction of operating room surveillance camera devices to prevent proxy surgery are emerging, but there are practical difficulties in implementing them due to strong opposition from the medical community. However, the social credibility of doctors is falling as incidents such as proxy surgery occur frequently. In this paper, we propose a medical staff identification system combining Beacon and iris recognition. The system adds reliability by operating on the blockchain network. The system performs primary identification by performing user authentication through iris recognition and proves that the medical staff is in the operating room through beacons. It also ensures patient trust in the surgeon by receiving beacon signals in the background and performing iris authentication at random intervals to prevent medical staff from leaving the operating room after only performing initial certification.
Journal of the Korean Institute of Telematics and Electronics
/
v.26
no.5
/
pp.85-91
/
1989
In this paper, we propose a neural net system for speech recognition, which is composed of two neural networks. Firstly the self-supervised BP(Back Propagation) network generates the distributed concept corresponding to the activity pattern in the hidden units. And then the self-organizing neural network forms a concept map which directly displays the similarity relations between concepts. By doing the above, the difficulty in learning the conventional BP network is solved and the weak side of BP falling into a pattern matcher is gone, while the strong point of generating the various internal representations is used. And we have obtained the concept map which is more orderly than the Kohonen's SOFM. The proposed neural net system needs not any special preprocessing and has a self-learning ability.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.