• Title/Summary/Keyword: Fall-like ADL

Search Result 2, Processing Time 0.017 seconds

Discrimination of Fall and Fall-like ADL Using Tri-axial Accelerometer and Bi-axial Gyroscope

  • Park, Geun-Chul;Kim, Soo-Hong;Baik, Sung-Wan;Kim, Jae-Hyung;Jeon, Gye-Rok
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.7-14
    • /
    • 2017
  • A threshold-based fall recognition algorithm using a tri-axial accelerometer and a bi-axial gyroscope mounted on the skin above the upper sternum was proposed to recognize fall-like activities of daily living (ADL) events. The output signals from the tri-axial accelerometer and bi-axial gyroscope were obtained during eight falls and eleven ADL action sequences. The thresholds of signal vector magnitude (SVM_Acc), angular velocity (${\omega}_{res}$), and angular variation (${\theta}_{res}$) were calculated using MATLAB. When the measured values of SVM_Acc, ${\omega}_{res}$, and ${\theta}_{res}$ were compared to the threshold values (TH1, TH2, and TH3), fall-like ADL events could be distinguished from a fall. When SVM_Acc was larger than 2.5 g (TH1), ${\omega}_{res}$ was larger than 1.75 rad/s (TH2), and ${\theta}_{res}$ was larger than 0.385 rad (TH3), eight falls and eleven ADL action sequences were recognized as falls. When at least one of these three conditions was not satisfied, the action sequences were recognized as ADL. Fall-like ADL events such as jogging and jumping up (or down) have posed a problem in distinguishing ADL events from an actual fall. When the measured values of SVM_Acc, ${\omega}_{res}$, and ${\theta}_{res}$ were applied to the sequential processing algorithm proposed in this study, the sensitivity was determined to be 100% for the eight fall action sequences and the specificity was determined to be 100% for the eleven ADL action sequences.

Neural network design for Ambulatory monitoring of elderly

  • Sharma, Annapurna;Lee, Hun-Jae;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.265-269
    • /
    • 2008
  • Home health care with compact wearable units sounds to be a convenient solution for the elderly people living independently. This paper presents a method to detect fall from the other activities of daily living and also to classify those activities. This kind of ambulatory monitoring enables them to get an emergency help in the case of the fatal fall event and can provide their general health status by observing the activities being performed in daily life. A tri-axial accelerometer sensor is used to get the acceleration anomalies associated with the user's movements. The three axis acceleration data are transferred to the base station sensor node via an IEEE 802.15.4 compliant zigbee module. The base station sensor node sends the data to base station PC for an offline processing. This work shows the feature set preparation using the principal component analysis (PCA) for the designing of neural network. The work includes the most common activities of daily living (ADL) like Rest, Walk and Run along with the detection of fall events from ADL. The angle from the vertical is found to be the most significant feature parameter for classification of fall while mean, standard deviation and FFT coefficients were used as the feature parameter for classifying the other activities under consideration. The accuracy for detection of fall events is 86%. The overall accuracy for ADL and fall is 94%.

  • PDF