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Abstract

A threshold-based fall recognition algorithm using a tri-axial accelerometer and a bi-axial gyroscope mounted on the skin above the

upper sternum was proposed to recognize fall-like activities of daily living (ADL) events. The output signals from the tri-axial accel-

erometer and bi-axial gyroscope were obtained during eight falls and eleven ADL action sequences. The thresholds of signal vector

magnitude (SVM_Acc), angular velocity (ω
res
), and angular variation (θ

res
) were calculated using MATLAB. When the measured values

of SVM_Acc, ω
res
, and θ

res
 were compared to the threshold values (TH1, TH2, and TH3), fall-like ADL events could be distinguished

from a fall. When SVM_Acc was larger than 2.5 g (TH1), ω
res
 was larger than 1.75 rad/s (TH2), and θ

res
 was larger than 0.385 rad (TH3),

eight falls and eleven ADL action sequences were recognized as falls. When at least one of these three conditions was not satisfied,

the action sequences were recognized as ADL. Fall-like ADL events such as jogging and jumping up (or down) have posed a problem

in distinguishing ADL events from an actual fall. When the measured values of SVM_Acc, ω
res
, and θ

res
 were applied to the sequential

processing algorithm proposed in this study, the sensitivity was determined to be 100% for the eight fall action sequences and the spec-

ificity was determined to be 100% for the eleven ADL action sequences.
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1. ITRODUCTION

Falls and unstable balance rank high among serious clinical

problems faced by older adults [1]. A fall is a common and

devastating clinical problem faced by the elderly, resulting in

injury, physical disability, high rates of skilled nursing home

placement, expensive medical costs, and loss of patient confidence

leading to voluntary restriction of activity [2]. Falls may cause

damage to soft tissues, joints, bone fracture, and can even lead to

death [3]. In addition, traumatic experiences from falls can induce

fear and anxiety, leading to a loss of self-confidence and depression.

In order to overcome these problems, researches have been

actively undertaken to monitor walking patterns and postural

changes during activities of daily living (ADL: routine activities

such as eating, bathing , dressing, toiling, transferring (walking)

and continence that people tend to do every day without needing

assistance) and falls. Several fall detection methods using video

and acoustic sensors [3-5], accelerometers [6,7], and gyroscopes

[8,9] have been performed. Among them, a tri-axial accelerometer

and a bi-axial gyroscope have been widely used owing to their

good performance in terms of high accuracy and reproducibility,

despite a relatively low price. Najafi et al. attached sensors to

different parts of the body to monitor falls and ADL events of the

elderly [10]. A postural change detection sensor module (PCDSM)

was developed to investigate postural changes and movement

patterns in ADL events and falls [11]. Bourke et al. and Kangas

et al. studied the effect of the position of tri-axial accelerometer on

the accuracy of fall-recognition. Bourke et al. announced the chest

to be the best position for attaching the tri-axial accelerometer

[12], whereas Kangas et al. reported the waist to be the best

position [13]. Other researchers too suggested the chest (or trunk)

to be a suitable position for attaching fall-detection sensors [14].

Although these researches have been conducted extensively,

actions involving rapid motion with a large impact, such as

jogging and jumping up (or down), have not been accurately

discriminated as ADL by fall recognition sensors yet. 

In this study, a threshold-based fall recognition algorithm using
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a tri-axial accelerometer and a bi-axial gyroscope mounted on the

skin above the upper sternum was proposed to recognize fall-like

ADL events without false alarms. When the measured values of

SVM_Acc, ωres, and θres were compared with the thresholds (TH1,

TH2, and TH3), fall-like ADL events could be distinguished from

fall events. In addition, when the measured values of SVM_Acc,

ωres, and θres were applied to the sequential processing algorithm,

the sensitivity was determined to be 100% for eight fall action

sequences and the specificity was determined to be 100% for

eleven ADL (including three fall-like ADL) action sequences.

2. EXPERIMENTAL

2.1 Signal vector magnitude

The signal vector magnitude (SVM_Acc) is obtained by summing

the signal vectors acquired from the tri-axial accelerometer. The

parameter SVM_Acc is effective in detecting actions, such as a

fall, accompanied by a large impact. When an object hits the floor

or an obstacle during the fall, a large impact is generated upon

collision. 

Karantonis et al. proposed the SVM for detecting a fall according

to the following formula [15]:

, (1)

where xi denotes the acceleration signal in the front/back direction,

yi denotes the acceleration signal in the left/right direction, and zi

denotes the acceleration signal in the upper/lower direction.

2.2 Angular velocity and angular variation 

The average angular velocity (ω) of the body in a time interval

of  is defined as the time ratio of the angular

displacement  to 

 and , (2)

where ωp is the angular velocity of the pitch signal generated in

the front/back direction and ωr is the angular velocity of the roll

signal generated in the left/right direction. 

The resultant vector of the angular velocity (ωres) is derived by

obtaining the root-sum-of-squares of ωp and ωr according to the

following formula.

(3)

The rotational angles (θp, θr) in the pitch and roll directions can

be obtained by integrating the angular velocity along the pitch and

roll axes. Thus, θp and θr are expressed as follows. 

 and (4)

The resultant angle variation (θres) of a rotating body can be

expressed as

,  (5)

The resultant maximum angle of rotation can be represented as

, (6)

where t1 is -0.5 s and t2 is +0.5 s before and after the fall,

respectively. 

2.3 Fall and ADL recognition algorithm

Falls and ADL action sequences can be distinguished by

sequentially comparing the mean ± SD of SVM_Acc, ωres, and θres

with the thresholds (TH1, TH2, and TH3), respectively. Fig. 1

shows the fall and ADL recognition algorithm proposed in this

experiment. The thresholds of SVM_Acc, ωres, and θres were set to

2.50 g, 1.75 rad/s, and 0.385 rad, respectively [16]. The thresholds

were obtained by attaining the average of the minimum values of

falls and the maximum values of ADL events [17]. The fall and

ADL recognition algorithm is described as follows. First, when

SVM_Acc is larger than TH1 (2.50 g), ωres is larger than TH2 (1.75

rad/s), and θres is larger than TH3 (0.385 rad), eight falls and

eleven ADL action sequences are recognized as falls. Second,
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Fig. 1. Flowchart of a sequential processing algorithm proposed for

fall and ADL recognition.
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when SVM_Acc is smaller than TH1 (2.50 g), ωres is smaller than

TH2 (1.75 rad/s), and θres is smaller than TH3 (0.385 rad), these

action events are recognized as ADL events. Third, when

SVM_Acc, ωres, and θres values are larger or smaller than the

thresholds (TH1, TH2, and TH3), respectively, these action events

are recognized as falls or ADL events according to a sequential

processing algorithm

2.4 Experimental protocol 

Table 1 shows the experimental protocol proposed in this study.

The experimental protocol can be divided into two categories:

falls and ADL. 

2.5 Sensitivity and specificity

The fall detection sensitivity was measured for eight fall types

separately, resulting in 200 samples. In order to measure the fall

detection specificity, ADL samples were combined, resulting in

275 samples. The sensitivity represents the percentage of correctly

detected fall events among the total number of events. The

specificity represents the percentage of correctly detected ADL

events among the total number of events. Using these definitions,

the sensitivity and specificity can be expressed as follows [18]:

, (7)

, (8)

where TP is a true positive (fall action events recognized as a fall),

FN is a false negative (fall action events misrecognized as ADL), TN

is a true negative (ADL action events recognized as ADL), and FP

is a false positive (ADL action events misrecognized as a fall).

2.6 Subjects

In order to evaluate the validity of the fall and ADL recognition

sequential algorithm presented in Fig. 1, experiments were carried

out repeatedly after establishing the experimental protocol

described in Table 1. The subjects were five healthy males with an

average age of 27.5 (±2.5 years), average height of 173 cm (±3.2 cm),

and average weight of 75 kg (±4.1 kg). It is important to distinguish

between fall and fall-like ADL for the elderly. However, it is

dangerous for the elderly to fall actually. So young subjects

performed simulated fall and fall-like ADL action sequences on

thick mattress instead. The purpose and experimental method of

the study was fully explained to the subjects before the experiment,

and informed written consents were obtained from each subject.

Each subject performed eight fall action sequences on thick

mattress and each fall was repeated five times; thus, each subject

performed 40 falls. Fig. 2 (a) shows the 3-axis acceleration and 2-

axis gyroscope mounted on the sternum. Fig. 2 (b) shows the fall

state in which a subject fell down in the backward from the

standing position on the mattress. Since there were five subjects,

fall recognition experiments were all carried out 200 times.

Furthermore, ADL experiments were executed repeatedly. Each

subject performed eleven ADL action sequences on thick mattress,

Sensitivity
TP

TP FN+
------------------- 100×=

Specificity
TN

TN FP+
------------------- 100×=

Table 1. Experimental protocol of falls and ADL action sequences

Protocol Action Sequence Abbreviation

Fall

Walking_right falls W_RF

Walking_left falls W_LF

Walking_forward falls W_FF

Walking_backward falls W_BF

Standing_right falls S_RF

Standing_left falls S_LF

Standing_forward falls S_FF

Standing_backward falls S_BF

ADL

Standing_sit on the floor_standing S_sOF_S

Sitting_lying on the floor_sitting s_LOF_s

Standing_lying on the bed_standing S_LOB_S

Standing_sit on the chair_standing S_sOC_S

Standing_slow walking 

(60 - 70 step/min.)_standing

S_SW_S

Standing_normal walking 

(80 - 90 step/min.)_standing

S_NW_S

Standing_walking using cane 

(40 - 50 step/min.)_standing

S_WC_S

Standing_jogging (5 ~ 6 step/s)_ standing S_Jo_S

Standing_jump up (25 ~ 30 cm)_standing S_Ju_S

Standing_jump down (40 ~ 45 cm)_standing S_Jd_S

Standing_up stairs_down stairs_standing S_US_DS_S

Fig. 2. (a) Tri-axial accelerometer and bi-axial gyroscope attached to

the sternum. (b) Simulated fall (backward) action sequence

performed by young subject on mattress.
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and each ADL was repeated five times; thus, each subject

performed 55 ADL sequences. Since five subjects participated in

the experiment, ADL action event experiments were performed

275 times. 

3. RESULT AND DISCUSSION

3.1 SVM_Acc parameter 

After attaching a tri-axial accelerometer to the skin above the

sternum, experiments were conducted according to the experimental

protocol described in Table 1. The values of SVM_Acc were

obtained by substituting the data acquired from the tri-axial

accelerometer into Eq. (1). The threshold (TH1) for distinguishing

eight falls and eleven ADL events was set to 2.50 g. Fig. 3 shows

the mean ± SD of SVM_Acc for eight falls and eleven ADL

actions. The sensitivity was determined to be 100% for eight falls.

However, the tri-axial accelerometer on the sternum could not

accurately discriminate five ADL actions - S_LOB_S, S_sOC_S,

S_Jo_S, S_Ju_S, and S_Jd_S. These five action sequences were

misrecognized as falls because they produced a large SVM_Acc

accompanying an instantaneous impact exceeding TH1 (2.50 g).

Thus, five of the eleven action sequences were misrecognized as

falls (i.e., with a specificity of 54.54%). 

Fig. 4 shows the measured signals of SVM_Acc exceeding TH1

(2.5 g) for five ADL actions, which were misrecognized as falls

in Fig. 3. When sitting or lying on an elastic surface, such as a

bed, a fall-like event is unlikely to be produced. However, in

certain circumstances, peak acceleration can occur because the

body has relatively high kinetic energy. After initial contact with

the surface, kinetic energy is dissipated very slowly, resulting in

several smooth peaks along the acceleration trace graph. As

shown in Fig. 4 (a), there is a peak higher than 2.5 g followed by

several oscillations. A similar pattern of oscillation can be

observed in the case of soft surfaces, such as a chair. In this case,

Fig. 3.Mean ± SD of SVM_Acc for eight falls and eleven ADL

action sequences. 

Fig. 4.Measured signals of SVM_Acc (g) for five ADL actions mis-

recognized as falls in Fig 3: (a) S_LOB_S, (b) S_sOC_S, (c)

S_Jo_S, (d) and (e) S_Ju_S and S_Jd_S.
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the first peak is generally very smooth, subsequently followed by

smaller peaks. In contrast, Fig. 4 (b) shows that sitting on a hard

surface like a chair often produces a fall-like event. When the

subject sits or lies down on elastic/soft surfaces, the acceleration

magnitude stabilizes with slow oscillations. In contrast, when the

subject sits or lies down on hard surfaces, the acceleration

magnitude quickly stabilizes with a few oscillations. As illustrated

in Fig. 4 (c), jogging can be modeled as small jump. When free

phases between steps are shorter, landing peaks are often made of

two or more overlapped sub-peaks owing to the landing foot

starting a new leap [19]. As shown in Figs. 4 (d-e), jumping up

and down leads to a relatively high peak acceleration exceeding

TH1 (2.5 g). The jumping motion is accompanied by a distinctive

acceleration pattern that can be easily identified. As illustrated in

Fig. 4 (d), the acceleration magnitude was smaller than 1 g when

the subject leaped to execute the jumping up motion. When the

subject reached the ground after jumping, the magnitude of

acceleration increased to approximately 4 g. This was subsequently

followed by oscillations, as the body stabilized itself. As shown in

Fig. 4 (e), the acceleration magnitude was decreased to smaller

than 1 g when the subject drew back to execute the jumping down

motion. When the subject landed on the ground, the magnitude of

acceleration was greatly increased (5.7 g) owing to high kinetic

energy. The motion was followed by subsequent oscillations as

the body stabilized itself. 

3.2 Angular velocity and angle variation

Fig. 5 shows the mean ± SD of ωres for eight falls and eleven

ADL actions. The values were obtained by applying the data

acquired from the bi-axial gyroscope to Eq. (3). The threshold

(TH2) of ωres for differentiating between falls and ADL events

was set to 1.75 rad/s. The sensitivity was 100% for eight falls. On

the other hand, ωres could not accurately discriminate four ADL

actions - s_LOF_s, S_Jo_S, S_Ju_S, and S_Jd_S - among the

eleven ADL action sequences. Accordingly, these four ADL

actions were misrecognized as falls, resulting in a specificity of

63.64%. Action sequences such as s_LOF_s produced a momentary

rotational motion exceeding TH2 (1.75 rad/s).The actions S_Jo_S,

S_Ju_S, and S_Jd_S were misrecognized as falls owing to the

instantaneous angular velocity despite small rotational motions.

Fig. 6 shows the measured signal values of ωres exceeding TH2

(1.75 rad/s) for four ADL action sequences, which were

misrecognized as falls in Fig. 5. In Fig. 6 (a), when the glute

region of subject touched the floor, a large angular velocity

exceeding TH2 was generated, which in turn generated a

rotational motion. In Fig. 6 (b), during jogging, large angular

velocities exceeding TH2 were repeatedly generated whenever the

feet touched the ground. After executing the jumping up motion

in Fig. 6 (c), a small angular velocity was generated when the

forefeet touched the ground, whereas a large angular velocity was

generated when the heels touched the surface. After executing the

movement, the body subsequently stabilized itself, resulting in a

low and wide angular velocity trace. After executing the jumping

down motion in Fig. 6 (d), a small angular velocity (0.88 rad/s)

was generated when the forefeet touched the ground. When the

feet were completely in contact with the ground, they caused a

large angular velocity exceeding TH3. The peak angular velocity

caused by the jumping down was higher compared to that caused

by the jumping up because jumping down from a high position

(40 - 45 cm) increased the rotational kinetic energy as the subject

touched the ground. In addition, the peak angular velocity shown

in Fig. 6 (d) was broader than that shown in Fig. 6 (c) because the

human body attempts to minimize the force of impact by reacting

flexibly and increasing the contact time with the surface.

Subsequently, movement was caused as the body stabilized itself.

Fig. 7 shows the mean ± SD of θres for eight falls and eleven

ADL action events. The data from a bi-axial gyroscope was

substituted into Eq. (5) in order to acquire these values. The

threshold (TH3) of θres for differentiating between falls and ADL

actions was set to 0.385 rad. The sensitivity was determined to be

100% for eight falls. ADL actions such as s_LOF_s and

S_LOB_S were misrecognized as falls (with a specificity of

81.82%), since these action sequences were accompanied by a

large angular motion. However, when θres was compared to TH3

(0.385 rad), S_Jo_S, S_Ju_S, and S_Jd_S action sequences, which

were reported to be indistinguishable from a fall [17, 19], were

correctly recognized as ADL events. 

Fig. 8 shows the measured signal values of θres - exceeding TH3

Fig. 5. Mean ± SD of ω
res
 for eight falls and ADL action sequences.
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(0.385 rad) for the action sequences s_LOF_s and S_LOB_S

misrecognized as falls in Fig. 7. Fig. 8 (a) shows θres of the body

as the subject lies down on the floor from a sitting position. The

large change in θres was caused in a relatively short time was

caused by the rotational motion with a small range. The parameter

θres was almost matained at a constant value after the subject

reached the maximum angle. Fig. 8 (b) shows θres of the body as

the subject lies down on a bed from a standing position. The large

change in θres in a relatively long time period was caused by the

rotational motion with a large range. After reaching the maximum

angle, θres gradually decreased, accompanied by oscillations. 

When a tri-axial accelerometer and a bi-axial gyroscope were

simultaneously used for discriminating between falls and ADL

events, some of the eleven ADL action sequences were

misrecognized as falls. For example, when SVM_Acc values were

compared with TH1, the action sequences S_LOB_S, S_sOC_S,

S_Jo_S, S_Ju_S, and S_Jd_S were misrecognized as falls. When

ωres values were compared with TH2, the action sequences

S_LOF_s, S_Jo_S, S_Ju_S, and S_Jd_S were misrecognized as

falls. When θres values were compared with TH3, the action

sequences S_LOF_s and S_LOB_S were misrecognized as falls. 

In order to recognize these action sequences accurately, the

proposed fall and ADL recognition algorithm (Fig. 1) was applied

Fig. 6. Measured signals of ω
res
 for four action sequences

misrecognized as falls in Fig. 5: (a) s_LOF_s, (b) S_Jo_S, (c)

S_Ju_S, and (d) S_Jd_S.

Fig. 7. Mean ± SD of θ
res
 for eight falls and eleven ADL action

events.

Fig. 8. Measured signal values of θ
res
 for two action sequences

misrecognized as falls in Fig. 7: (a) s_LOF_s and (b)

S_LOB_S.
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to the experimental protocol (Table 1). Table 2 shows the

experimental results for eight falls and eleven ADL action

sequences. For the eight fall action sequences, P (pass) indicates

that the value of SVM_Acc is larger than TH1 (2.50 g), the value

of ωres is larger than TH2 (1.75 rad/s), and the value of θres is larger

than TH3 (0.385 rad). When at least one of these values is lower

than the corresponding threshold value, this action sequence is

denoted as F (false). On the other hand, for the eleven ADL action

sequences, P (pass) indicates that the value of SVM_Acc is lower

than TH1 (2.50 g), the value of ωres value is lower than TH2

(1.75 rad/s), and the value of θres is lower than TH3 (0.385 rad).

When at least one of these values is larger than the corresponding

threshold value, this action sequence is denoted as F (false).

The description of Table 2 is as follows. 

First, when the values of SVM_Acc, ωres, and θres for eight falls

action sequences were compared with the thresholds (TH1, TH2,

and TH3), respectively, the eight fall action sequences were

recognized as falls. 

Second, when the values of SVM_Acc for the eleven ADL

action sequences were compared with TH1, the action sequences

S_LOB_S, S_sOC_S, S_Jo_S, S_Ju_S, and S_Jd_S were

misrecognized as falls. However, when the value of ωres for these

five actions were compared with TH2, the action sequences

S_LOB_S and S_sOC_S were correctly recognized as ADL events.

In addition, when the values of θres for the action sequences

S_Jo_S, S_Ju_S, and S_Jd_S were compared with TH3, these

actions were correctly recognized as ADL events.

Third, when the values of ωres for the eleven ADL action

sequences were compared with TH2, the action sequences

S_LOF_s, S_Jo_S, S_Ju_S, and S_Jd_S were misrecognized as

falls. However, when the value of SVM_Acc for the action

sequence S_LOF_s was compared with TH1, this action was

recognized as ADL. When the values of θres for the action

sequences S_Jo_S, S_Ju_S, and S_Jd_S were compared with

TH3, these actions were recognized as ADL. 

Fourthly, when the value of θres for the eleven ADL action

sequences were compared with TH3, the action sequences

S_LOF_s and S_LOB_S were misrecognized as falls. However,

S_LOF_S was recognized as ADL by SVM_Acc and S_LOB_S

was recognized as ADL by ωres.

When the values of SVM_Acc, ωres, and θres values for the eight

falls and eleven ADL action sequences were sequentially applied

to the algorithm in Fig. 1, the sensitivity and the specificity of

these actions were determined as follows. When SVM_Acc was

compared with TH1, the sensitivity was 100% for the eight fall

action sequences and the specificity was 54.54% for the eleven

ADL action sequences. When ωres was compared with TH2, the

sensitivity was 100% for the eight fall actions and the specificity

was 63.63% for the eleven ADL actions. When θres was compared

with TH3, the sensitivity was 100% for the eight fall types and the

specificity was 81.81% for the eleven ADL types. However, when

SVM_Acc, ωres, and θres were applied sequentially to the thresholds

(TH1, TH2, and TH3) according to the sequential processing

algorithm proposed in this study, the sensitivity for the eight falls

and the specificity for the eleven ADL events were both 100%.

4. CONCLUSIONS

In order to distinguish between falls and ADL events, many

researches have been actively undertaken to monitor the walking

patterns and postural changes in ADL events and falls. Several fall

detection methods using video and acoustic sensors, tri-axial

accelerometer, bi/tri-axial gyroscope, a combined sensor module

with tri-axial accelerometer and bi/tri-axial gyroscope, and a fall

recognition algorithm have been studied so far. Despite these

studies, fall-like ADL events, such as jogging and jumping up (or

down), have not been accurately distinguished from real falls.

Table 2. Experimental results when the fall and ADL recognition

algorithm in Fig. 1 was applied to the experimental protocol

in Table 1. 

Action Sequences SVM_Acc ω
res

θ
res

Results of SPA

Falls

W_RF P P P P

W-LF P P P P

W_FF P P P P

W_BF P P P P

S_RF P P P P

S_LF P P P P

S_FF P P P P

S_BF P P P P

ADLs

S_sOF_S P P P P

S_LOF_s P F F P

S_LOB_S F P F P

S_sOC_S F P P P

S_SW_S P P P P

S_NW_S P P P P

S_WC_S P P P P

S_Jo_S F F P P

S_Ju_S F F P P

S_Jd_S F F P P

S_US_DS_S P P P P

-SPA: Sequential Processing Algorithm
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In this study, a threshold-based fall recognition algorithm using

a tri-axial accelerometer and a bi-axial gyroscope mounted on the

skin above the upper sternum was proposed to recognize fall-like

ADL events without false alarms. When the measured values of

SVM_Acc, ωres, and θres were compared with the thresholds (TH1,

TH2, and TH3), fall-like ADL events could be distinguished from

fall events. In particular, when the measured values of SVM_Acc,

ωres, and θres were applied to the sequential processing algorithm,

the sensitivity was determined to be 100% for the eight fall action

sequences and the specificity was determined to be 100% for

eleven ADL (including three fall-like ADL) action sequences.

The limitation of this study is as follows. When performing fall

and fall-like ADL action sequences, the elderly could pose a risk.

So young subjects performed simulated action sequences on mat

instead. However, the elderly cannot control their own body

flexibly due to the aging of the body’s musculoskeletal system, so

the data may be significantly different when the elderly perform

fall and fall-like ADL action sequences than the young do. In the

future, it will be possible to obtain more fall-related data similar

to the actual situation if the experiment is conducted safely for the

elderly.
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