• Title/Summary/Keyword: Fake text

Search Result 25, Processing Time 0.034 seconds

Social Media Fake News in India

  • Al-Zaman, Md. Sayeed
    • Asian Journal for Public Opinion Research
    • /
    • v.9 no.1
    • /
    • pp.25-47
    • /
    • 2021
  • This study analyzes 419 fake news items published in India, a fake-news-prone country, to identify the major themes, content types, and sources of social media fake news. The results show that fake news shared on social media has six major themes: health, religion, politics, crime, entertainment, and miscellaneous; eight types of content: text, photo, audio, and video, text & photo, text & video, photo & video, and text & photo & video; and two main sources: online sources and the mainstream media. Health-related fake news is more common only during a health crisis, whereas fake news related to religion and politics seems more prevalent, emerging from online media. Text & photo and text & video have three-fourths of the total share of fake news, and most of them are from online media: online media is the main source of fake news on social media as well. On the other hand, mainstream media mostly produces political fake news. This study, presenting some novel findings that may help researchers to understand and policymakers to control fake news on social media, invites more academic investigations of religious and political fake news in India. Two important limitations of this study are related to the data source and data collection period, which may have an impact on the results.

Fake News Detection for Korean News Using Text Mining and Machine Learning Techniques (텍스트 마이닝과 기계 학습을 이용한 국내 가짜뉴스 예측)

  • Yun, Tae-Uk;Ahn, Hyunchul
    • Journal of Information Technology Applications and Management
    • /
    • v.25 no.1
    • /
    • pp.19-32
    • /
    • 2018
  • Fake news is defined as the news articles that are intentionally and verifiably false, and could mislead readers. Spread of fake news may provoke anxiety, chaos, fear, or irrational decisions of the public. Thus, detecting fake news and preventing its spread has become very important issue in our society. However, due to the huge amount of fake news produced every day, it is almost impossible to identify it by a human. Under this context, researchers have tried to develop automated fake news detection method using Artificial Intelligence techniques over the past years. But, unfortunately, there have been no prior studies proposed an automated fake news detection method for Korean news. In this study, we aim to detect Korean fake news using text mining and machine learning techniques. Our proposed method consists of two steps. In the first step, the news contents to be analyzed is convert to quantified values using various text mining techniques (Topic Modeling, TF-IDF, and so on). After that, in step 2, classifiers are trained using the values produced in step 1. As the classifiers, machine learning techniques such as multiple discriminant analysis, case based reasoning, artificial neural networks, and support vector machine can be applied. To validate the effectiveness of the proposed method, we collected 200 Korean news from Seoul National University's FactCheck (http://factcheck.snu.ac.kr). which provides with detailed analysis reports from about 20 media outlets and links to source documents for each case. Using this dataset, we will identify which text features are important as well as which classifiers are effective in detecting Korean fake news.

Feature Analysis for Detecting Mobile Application Review Generated by AI-Based Language Model

  • Lee, Seung-Cheol;Jang, Yonghun;Park, Chang-Hyeon;Seo, Yeong-Seok
    • Journal of Information Processing Systems
    • /
    • v.18 no.5
    • /
    • pp.650-664
    • /
    • 2022
  • Mobile applications can be easily downloaded and installed via markets. However, malware and malicious applications containing unwanted advertisements exist in these application markets. Therefore, smartphone users install applications with reference to the application review to avoid such malicious applications. An application review typically comprises contents for evaluation; however, a false review with a specific purpose can be included. Such false reviews are known as fake reviews, and they can be generated using artificial intelligence (AI)-based text-generating models. Recently, AI-based text-generating models have been developed rapidly and demonstrate high-quality generated texts. Herein, we analyze the features of fake reviews generated from Generative Pre-Training-2 (GPT-2), an AI-based text-generating model and create a model to detect those fake reviews. First, we collect a real human-written application review from Kaggle. Subsequently, we identify features of the fake review using natural language processing and statistical analysis. Next, we generate fake review detection models using five types of machine-learning models trained using identified features. In terms of the performances of the fake review detection models, we achieved average F1-scores of 0.738, 0.723, and 0.730 for the fake review, real review, and overall classifications, respectively.

Detecting Fake Reviews: Exploring the Linguistic Characteristics by Computerized Text Analysis

  • Moon-Yong Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.281-289
    • /
    • 2024
  • Online consumer reviews have become the most important basis for online shopping and product sales. Fake reviews are generated to boost sales because online consumer reviews play a vital role in consumers' decision making. The prevalence of fake reviews violates the regulations of the online business environment and misleads consumers in decision making. Thus, the present research investigates the effects of reviews' linguistic characteristics (i.e., analytical thinking, authenticity) on review fakeness. Specifically, this research examines whether (1) the level of analytical thinking is lower for fake (vs. genuine) reviews (hypothesis 1) and (2) the level of authenticity is lower for fake (vs. genuine) reviews (hypothesis 2). This research analyzed user-generated hotel reviews (genuine reviews, fake reviews) collected from MTurk. Linguistic Inquiry and Word Count (LIWC) 2022 was adopted to code review contents, and the hypotheses were tested using logistic regression. Consistent with the hypotheses 1 and 2, the results indicate that (1) analyticial thinking is negatively associated with review fakeness; and (2) authenticity is negatively associated with review fakeness. The findings provide important implications to identify fake reviews based on linguistic characteristics.

EDGE: An Enticing Deceptive-content GEnerator as Defensive Deception

  • Li, Huanruo;Guo, Yunfei;Huo, Shumin;Ding, Yuehang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.5
    • /
    • pp.1891-1908
    • /
    • 2021
  • Cyber deception defense mitigates Advanced Persistent Threats (APTs) with deploying deceptive entities, such as the Honeyfile. The Honeyfile distracts attackers from valuable digital documents and attracts unauthorized access by deliberately exposing fake content. The effectiveness of distraction and trap lies in the enticement of fake content. However, existing studies on the Honeyfile focus less on this perspective. In this work, we seek to improve the enticement of fake text content through enhancing its readability, indistinguishability, and believability. Hence, an enticing deceptive-content generator, EDGE, is presented. The EDGE is constructed with three steps: extracting key concepts with a semantics-aware K-means clustering algorithm, searching for candidate deceptive concepts within the Word2Vec model, and generating deceptive text content under the Integrated Readability Index (IR). Furthermore, the readability and believability performance analyses are undertaken. The experimental results show that EDGE generates indistinguishable deceptive text content without decreasing readability. In all, EDGE proves effective to generate enticing deceptive text content as deception defense against APTs.

A Comparative Study of Text analysis and Network embedding Methods for Effective Fake News Detection (효과적인 가짜 뉴스 탐지를 위한 텍스트 분석과 네트워크 임베딩 방법의 비교 연구)

  • Park, Sung Soo;Lee, Kun Chang
    • Journal of Digital Convergence
    • /
    • v.17 no.5
    • /
    • pp.137-143
    • /
    • 2019
  • Fake news is a form of misinformation that has the advantage of rapid spreading of information on media platforms that users interact with, such as social media. There has been a lot of social problems due to the recent increase in fake news. In this paper, we propose a method to detect such false news. Previous research on fake news detection mainly focused on text analysis. This research focuses on a network where social media news spreads, generates qualities with DeepWalk, a network embedding method, and classifies fake news using logistic regression analysis. We conducted an experiment on fake news detection using 211 news on the Internet and 1.2 million news diffusion network data. The results show that the accuracy of false network detection using network embedding is 10.6% higher than that of text analysis. In addition, fake news detection, which combines text analysis and network embedding, does not show an increase in accuracy over network embedding. The results of this study can be effectively applied to the detection of fake news that organizations spread online.

Text Mining-based Fake News Detection Using News And Social Media Data (뉴스와 소셜 데이터를 활용한 텍스트 기반 가짜 뉴스 탐지 방법론)

  • Hyun, Yoonjin;Kim, Namgyu
    • The Journal of Society for e-Business Studies
    • /
    • v.23 no.4
    • /
    • pp.19-39
    • /
    • 2018
  • Recently, fake news has attracted worldwide attentions regardless of the fields. The Hyundai Research Institute estimated that the amount of fake news damage reached about 30.9 trillion won per year. The government is making efforts to develop artificial intelligence source technology to detect fake news such as holding "artificial intelligence R&D challenge" competition on the title of "searching for fake news." Fact checking services are also being provided in various private sector fields. Nevertheless, in academic fields, there are also many attempts have been conducted in detecting the fake news. Typically, there are different attempts in detecting fake news such as expert-based, collective intelligence-based, artificial intelligence-based, and semantic-based. However, the more accurate the fake news manipulation is, the more difficult it is to identify the authenticity of the news by analyzing the news itself. Furthermore, the accuracy of most fake news detection models tends to be overestimated. Therefore, in this study, we first propose a method to secure the fairness of false news detection model accuracy. Secondly, we propose a method to identify the authenticity of the news using the social data broadly generated by the reaction to the news as well as the contents of the news.

A Study on Fake News Subject Matter, Presentation Elements, Tools of Detection, and Social Media Platforms in India

  • Kanozia, Rubal;Arya, Ritu;Singh, Satwinder;Narula, Sumit;Ganghariya, Garima
    • Asian Journal for Public Opinion Research
    • /
    • v.9 no.1
    • /
    • pp.48-82
    • /
    • 2021
  • This research article attempts to understand the current situation of fake news on social media in India. The study focused on four characteristics of fake news based on four research questions: subject matter, presentation elements of fake news, debunking tool(s) or technique(s) used, and the social media site on which the fake news story was shared. A systematic sampling method was used to select a sample of 90 debunked fake news stories from two Indian fact-checking websites, Alt News and Factly, from December 2019 to February 2020. A content analysis of the four characteristics of fake news stories was carefully analyzed, classified, coded, and presented. The results show that most of the fake news stories were related to politics in India. The majority of the fake news was shared via a video with text in which narrative was changed to mislead users. For the largest number of debunked fake news stories, information from official or primary sources, such as reports, data, statements, announcements, or updates were used to debunk false claims.

Algorithm Design to Judge Fake News based on Bigdata and Artificial Intelligence

  • Kang, Jangmook;Lee, Sangwon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.11 no.2
    • /
    • pp.50-58
    • /
    • 2019
  • The clear and specific objective of this study is to design a false news discriminator algorithm for news articles transmitted on a text-based basis and an architecture that builds it into a system (H/W configuration with Hadoop-based in-memory technology, Deep Learning S/W design for bigdata and SNS linkage). Based on learning data on actual news, the government will submit advanced "fake news" test data as a result and complete theoretical research based on it. The need for research proposed by this study is social cost paid by rumors (including malicious comments) and rumors (written false news) due to the flood of fake news, false reports, rumors and stabbings, among other social challenges. In addition, fake news can distort normal communication channels, undermine human mutual trust, and reduce social capital at the same time. The final purpose of the study is to upgrade the study to a topic that is difficult to distinguish between false and exaggerated, fake and hypocrisy, sincere and false, fraud and error, truth and false.

Development of a Fake News Detection Model Using Text Mining and Deep Learning Algorithms (텍스트 마이닝과 딥러닝 알고리즘을 이용한 가짜 뉴스 탐지 모델 개발)

  • Dong-Hoon Lim;Gunwoo Kim;Keunho Choi
    • Information Systems Review
    • /
    • v.23 no.4
    • /
    • pp.127-146
    • /
    • 2021
  • Fake news isexpanded and reproduced rapidly regardless of their authenticity by the characteristics of modern society, called the information age. Assuming that 1% of all news are fake news, the amount of economic costs is reported to about 30 trillion Korean won. This shows that the fake news isvery important social and economic issue. Therefore, this study aims to develop an automated detection model to quickly and accurately verify the authenticity of the news. To this end, this study crawled the news data whose authenticity is verified, and developed fake news prediction models using word embedding (Word2Vec, Fasttext) and deep learning algorithms (LSTM, BiLSTM). Experimental results show that the prediction model using BiLSTM with Word2Vec achieved the best accuracy of 84%.