• Title/Summary/Keyword: Fairness algorithm

Search Result 307, Processing Time 0.025 seconds

The IEEE 802.11 MAC Protocol to solve Unfairness Problem in Multihop Wireless Ad Hoc Networks (다중 무선 에드혹 네트워크에서 불공정 문제를 해결하기 위한 802.11 MAC 프로토콜)

  • Nam, Jae-Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.91-94
    • /
    • 2007
  • In the IEEE 802.11 Wireless Local Area Networks (WLANs), network nodes experiencing collisions on the shared channel need to backoff for a random period of time, which is uniformly selected from the Contention Window (CW). This contention window is dynamically controlled by the Binary Exponential Backoff (BEB) algorithm. The BEB scheme suffers from a fairness problem and low throughput under high traffic load. In this paper, I propose a new backoff algorithm for use with the IEEE 802.11 Distributed Coordination Function.

  • PDF

Fuzzy Logic Based Buffer Management Algorithm to Improve Performance of Internet Traffic over ATM Networks (ATM 네트워크에서 인터넷 트래픽 성능 향상을 위한 퍼지기반 버퍼 관리 알고리즘)

  • 김희수;김관웅;박준성;배성환;전병실
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.9
    • /
    • pp.358-365
    • /
    • 2003
  • To support Internet traffic efficiently over ATM networks, Guaranteed Frame Rate(GFR) has been proposed in the ATM Forum. GFR provides minimum rate guarantees to VCs and allows any excess bandwidth in the network to be shared among the contending VCs in a fair manner. In this paper, we proposed a new fuzzy logic based buffer management algorithm that provides MCR guarantee and fair sharing to GFR VCs. A key feature of proposed algorithm is its ability to accept or drop a new incoming packet dynamically based on buffer condition and load ratio of VCs. This is achieved by using fuzzy logic controller for the production of a drop factor. Simulation results show that proposed scheme significantly improves fairness and TCP throughput compared with previous schemes.

Fixed Indoor-BS Selection Based Self-Healing in Indoor Wireless Communication System (인도어 무선통신시스템에서 고정적 인도어기지국 선택을 통한 자가치유 알고리즘)

  • Lee, Howon;Lee, Kisong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.7
    • /
    • pp.1540-1546
    • /
    • 2014
  • In order to resolve coverage hole problems caused by indoor-BS (IBS) faults, we propose a new frame structure and practical algorithm based on optimization technique. Our main contributions can be described as follows: 1) a frame structure with healing channels for solving abnormal IBS faults; and 2) an efficient heuristic resource allocation algorithm with fixed IBS selection to reduce the complexity for the optimization problem. Through intensive simulations, we evaluate the performance excellency of our proposed algorithm with respect to average cell capacity and user fairness compared with conventional algorithms.

Optimal user selection and power allocation for revenue maximization in non-orthogonal multiple access systems

  • Pazhayakandathil, Sindhu;Sukumaran, Deepak Kayiparambil;Koodamannu, Abdul Hameed
    • ETRI Journal
    • /
    • v.41 no.5
    • /
    • pp.626-636
    • /
    • 2019
  • A novel algorithm for joint user selection and optimal power allocation for Stackelberg game-based revenue maximization in a downlink non-orthogonal multiple access (NOMA) network is proposed in this study. The condition for the existence of optimal solution is derived by assuming perfect channel state information (CSI) at the transmitter. The Lagrange multiplier method is used to convert the revenue maximization problem into a set of quadratic equations that are reduced to a regular chain of expressions. The optimal solution is obtained via a univariate iterative procedure. A simple algorithm for joint optimal user selection and power calculation is presented and exhibits extremely low complexity. Furthermore, an outage analysis is presented to evaluate the performance degradation when perfect CSI is not available. The simulation results indicate that at 5-dB signal-to-noise ratio (SNR), revenue of the base station improves by at least 15.2% for the proposed algorithm when compared to suboptimal schemes. Other performance metrics of NOMA, such as individual user-rates, fairness index, and outage probability, approach near-optimal values at moderate to high SNRs.

Application of Decision Tree Algorithm for Automating Public Survey Performance Review (공공측량 성과심사 자동화를 위한 결정트리 알고리즘의 적용)

  • Mi-Jin Hyeon;Cheol Jin;Myung-Jin Park;Hyun Choi
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.2_2
    • /
    • pp.333-341
    • /
    • 2024
  • The current public survey performance review extracts samples according to the set screening ratio, and examines the extracted samples to determine the suitability or inadequacy of the survey performance. The examiner directly judges the survey performance submitted by the performer, and extracts it in consideration of various field conditions and topography for each subject. However, it is necessary to secure fairness in the examination as it is extracted with different extraction methods for each subject and the judgment of the examiner. Accordingly, in order to automate sampling for public survey performance review, the detailed sampling criteria of the reviewer were investigated to prepare a volume calculation table, and the automation of sampling using Python was studied. In addition, by reviewing items that can and cannot be automated, the application of the automated decision tree algorithm of sampling was reviewed.

Adaptive Logarithmic Increase Congestion Control Algorithm for Satellite Networks

  • Shin, Minsu;Park, Mankyu;Oh, Deockgil;Kim, Byungchul;Lee, Jaeyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.8
    • /
    • pp.2796-2813
    • /
    • 2014
  • This paper presents a new algorithm called the adaptive logarithmic increase and adaptive decrease algorithm (A-LIAD), which mainly addresses the Round-Trip Time (RTT) fairness problem in satellite networks with a very high propagation delay as an alternative to the current TCP congestion control algorithm. We defined a new increasing function in the fashion of a logarithm depending on the increasing factor ${\alpha}$, which is different from the other logarithmic increase algorithm adopting a fixed value of ${\alpha}$ = 2 leading to a binary increase. In A-LIAD, the ${\alpha}$ value is derived in the RTT function through the analysis. With the modification of the increasing function applied for the congestion avoidance phase, a hybrid scheme is also presented for the slow start phase. From this hybrid scheme, we can avoid an overshooting problem during a slow start phase even without a SACK option. To verify the feasibility of the algorithm for deployment in a high-speed and long-distance network, several aspects are evaluated through an NS-2 simulation. We performed simulations for intra- and interfairness as well as utilization in different conditions of varying RTT, bandwidth, and PER. From these simulations, we showed that although A-LIAD is not the best in all aspects, it provides a competitive performance in almost all aspects, especially in the start-up and packet loss impact, and thus can be an alternative TCP congestion control algorithm for high BDP networks including a satellite network.

Design and Performance of Linear Clock Fair Queueing Algorithm (LCFQ ( Linear Clock Fair Queueing ) 알고리즘의 설계와 성능 분석)

  • Kim, Young-Han;Lee, Jae-Yong
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.1
    • /
    • pp.1-8
    • /
    • 1999
  • In order to provide appropriate Quality of Service(QoS) guarantee to each traffic flow in intergrated service networks, an efficient traffic scheduling algorithm as well as resource reservation must be adopted in host and transit routers. In this paper, a new efficient fair queueing algorithm which adopts a linearly increasing virtual time is presented. The proposed algorithm is fair and the maximum and mean delay guaranteed of each flow are less than those of the SCFQ(self clocked fair queueing) algorithm which is one of the most promising traffic scheduling algorithm, while providing low implementation complexity as the SCFQ scheme. And, it has the better isolation provided than SCFQ, which means that each flow is much less influenced by the violating traffic flows provided its allocated bandwidth gurantee. The fairness of the proposed algorithm is proved and simulation results of maximum and mean delay presented.

  • PDF

Reviewer Recommendation Algorithms in Journal Manuscript Submission and Review Systems (저널 논문 투고 및 심사 시스템에서 심사위원 추천 알고리즘)

  • Jeong, Yong-Jin;Kim, Kyoung-Han;Lim, Hyun-Kyo;Kim, Yong-Hwan;Han, Youn-Hee
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.8
    • /
    • pp.321-330
    • /
    • 2015
  • In journal manuscript submission and review systems, authors can submit their manuscript at any time and editorial members are struggling to find proper reviewers for the submitted manuscripts and assign them to such reviewers. In order to solve this problem, we propose a greedy algorithm and a genetic algorithm to recommend proper reviewers for the submitted manuscripts. The proposed algorithms evaluate reviewers' speciality for the submitted manuscripts by using the submitted manuscripts' keywords and the reviewers expertises. In addition to that, they take the fairness among the reviewers' speciality and the review frequency for consideration. To verify the proposed algorithms, we apply them to the JIPS manuscript submission and review system that the Korea Information Processing Society has operated, and present the results in this paper. By performing the performance evaluation of the proposed algorithms, we finally show that the genetic algorithm outperforms the greedy algorithm in terms of the recommended reviewers' fitness.

Downlink Scheduling Algorithm Based on Probability of Incumbent User Presence for Cognitive Radio Networks (인지 라디오 네트워크에서 우선 사용자 출현 확률을 고려한 하향링크 스케줄링 알고리즘)

  • Heo, Dae-Cheol;Kim, Jung-Jong;Lee, Jung-Won;Hwang, Jun-Ho;Lee, Won-Cheol;Shin, Yo-An;Yoo, Myung-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.2B
    • /
    • pp.178-187
    • /
    • 2009
  • Cognitive radio (CR) technology is to maximize the spectrum utilization by allocating the unused spectrums to the unlicensed users. In CR environment, it is strictly required for the unlicensed users not to interference with the licensed users. Thus, it is essential to rely on the scheduling algorithm to avoid the interference when utilizing spectrum holes that are changing in time and frequency. However, the existing scheduling algorithms that are applied for the wireless communication environment considering the licensed users only is not appropriate for CR environment. In this paper, we propose downlink scheduling algorithm based on probability of incumbent user presence for cognitive radio networks. With computer simulations, it is shown that the proposed scheduling algorithm outperforms the conventional scheduling algorithm.

Availability based Scheduling Scheme for Fair Data Collection with Mobile Sink in Wireless Sensor Networks (무선 센서 네트워크에서 모바일 싱크를 통한 데이터 수집의 균등성 보장을 위한 가용성 기반 스케줄링 기법)

  • Lee, Joa-Hyoung;Jo, Young-Tae;Jung, In-Bum
    • The KIPS Transactions:PartA
    • /
    • v.16A no.3
    • /
    • pp.169-180
    • /
    • 2009
  • With fixed sinks, the network stability could be improved while the network life time could be decreased by the rapid energy dissipation around the fixed sink because of the concentrated network traffic from sensor nodes to the fixed sink in wireless sensor network. To address this problem, mobile sinks, which decentralize the network traffic, has received a lot of attention from many researchers recently. Since a mobile sink has a limited period to communicate with each sensor nodes, it is necessary for a scheduling algorithm to provide the fairness of data collection from each sensor nodes. In the paper, we propose the new scheduling algorithm, ASF(Availability based Scheduling scheme for Fair data collection), for the fair data collection by a mobile in the sensor networks. The ASF takes account of the distance between each sensor nodes and the mobile sink as scheduling metric, as well as the amount of collected data from each sensor nodes. Experiment results shows that the ASF improves the fairness of data collection among the sensor nodes, comparing to existing algorithm.