• Title/Summary/Keyword: Failure modes and effects analysis

Search Result 163, Processing Time 0.03 seconds

Fatigue property analysis of U rib-to-crossbeam connections under heavy traffic vehicle load considering in-plane shear stress

  • Yang, Haibo;Qian, Hongliang;Wang, Ping
    • Steel and Composite Structures
    • /
    • v.38 no.3
    • /
    • pp.271-280
    • /
    • 2021
  • In this study, the fatigue property of U rib-to-crossbeam connections in orthotropic steel bridge (OSB) crossbeams under heavy traffic vehicle load was investigated considering the effects of in-plane shear stress. The applicability of an improved structural stress (ISS) method was validated for the fatigue behavior analysis of nonwelded arc-shaped cutout regions in multiaxial stress states. Various types of fatigue testing specimens were compared for investigating the equivalent structural stress, fatigue crack initiation positions, and failure modes with the unified standards. Furthermore, the implications of OSB crossbeams and specified loading cases are discussed with respect to the improved method. The ISS method is proven to be applicable for analyzing the fatigue property of nonwelded arc-shaped cutout regions in OSB crossbeams. The used method is essential for gaining a reliable prediction of the most likely failure modes under a specific heavy traffic vehicle load. The evaluated results using the used method are proven to be accurate with a slighter standard deviation. We obtained the trend of equivalent structural stress in arc-shaped cutout regions and validated the crack initiation positions and propagation directions by comparing them with the fatigue testing results. The implications of crossbeam spans on fatigue property are less significant than the effects of crossbeams.

Numerical Analysis on External Strengthening Effects in Aged Structures (사용중인 구조물의 보강효과에 대한 해석적 연구)

  • 신승교;임윤묵;김문겸;박동철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.455-460
    • /
    • 2002
  • In this study, a numerical analysis that can effectively predict the effect of strengthening of cracked flexural members is developed using axial deformation link elements. Concrete and interface between concrete and repair material are considered as quasi-brittle material. Reinforcing bars and reinforcing steel plates are assumed to perform as elasto-plastic materials. Unloading behavior of axial deformation link element is implemented. In the developed numerical model, a flexural member is intentionally cracked by pre-loading, then, the cracked member is repaired using extra elements, and reloaded. The results from analysis of repaired flexural members agrees well with available experiment results. Also, it was shown that the effect of strengthening and the change of failure mode with respect to the time for strengthening and thickness of repair materials. Based on the results, it was determined that the developed numerical model has a good agreement for determining failure modes and effect of strengthening in cracked flexural members. By utilizing the developed numerical analysis, the time and dimension of external strengthening in an existing cracked flexural member with predition of failure mechanism can be determined.

  • PDF

Stochastic FMECA Assessment for Combustion-Turbine Generating Unit in Order to RCM Schedule (복합화력발전기의 신뢰도 기반 유지보수를 위한 확률론적 FMECA 평가)

  • Joo, Jae-Myung;Lee, Seung-Hyuk;Kim, Jin-O
    • Proceedings of the KIEE Conference
    • /
    • 2006.11a
    • /
    • pp.351-353
    • /
    • 2006
  • Preventive maintenance can avail the generating unit to reduce cost and gain more profit in a competitive supply-side power market. so, it is necessary to perform reliability analysis on the systems in which reliability is essential. In this paper, FMECA assessment adopted using real historical failure data in Korean power plants for apply RCM analytical method. The stochastic FMECA is an engineering analysis and a core activity performed by reliability engineers to review the effects of probable failure modes of generating unit and assemblies of the power system on system performance. Optimal RCM schedule which is considered the severity level of each generating unit and failure probability from failure prediction of generating unit can be planned using proposed FMECA with IOE index.

  • PDF

Risk Evaluation of Failure Cause for FMEA under a Weibull Time Delay Model (와이블 지연시간 모형 하에서의 FMEA를 위한 고장원인의 위험평가)

  • Kwon, Hyuck Moo;Lee, Min Koo;Hong, Sung Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.3
    • /
    • pp.83-91
    • /
    • 2018
  • This paper suggests a weibull time delay model to evaluate failure risks in FMEA(failure modes and effects analysis). Assuming three types of loss functions for delayed time in failure cause detection, the risk of each failure cause is evaluated as its occurring frequency and expected loss. Since the closed form solution of the risk metric cannot be obtained, a statistical computer software R program is used for numerical calculation. When the occurrence and detection times have a common shape parameter, though, some simple results of mathematical derivation are also available. As an enormous quantity of field data becomes available under recent progress of data acquisition system, the proposed risk metric will provide a more practical and reasonable tool for evaluating the risks of failure causes in FMEA.

Risk Analysis for the Rotorcraft Landing System Using Comparative Models Based on Fuzzy (퍼지 기반 다양한 모델을 이용한 회전익 항공기 착륙장치의 위험 우선순위 평가)

  • Na, Seong Hyeon;Lee, Gwang Eun;Koo, Jeong Mo
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.2
    • /
    • pp.49-57
    • /
    • 2021
  • In the case of military supplies, any potential failure and causes of failures must be considered. This study is aimed at examining the failure modes of a rotorcraft landing system to identify the priority items. Failure mode and effects analysis (FMEA) is applied to the rotorcraft landing system. In general, the FMEA is used to evaluate the reliability in engineering fields. Three elements, specifically, the severity, occurrence, and detectability are used to evaluate the failure modes. The risk priority number (RPN) can be obtained by multiplying the scores or the risk levels pertaining to severity, occurrence, and detectability. In this study, different weights of the three elements are considered for the RPN assessment to implement the FMEA. Furthermore, the FMEA is implemented using a fuzzy rule base, similarity aggregation model (SAM), and grey theory model (GTM) to perform a comparative analysis. The same input data are used for all models to enable a fair comparison. The FMEA is applied to military supplies by considering methodological issues. In general, the fuzzy theory is based on a hypothesis regarding the likelihood of the conversion of the crisp value to the fuzzy input. Fuzzy FMEA is the basic method to obtain the fuzzy RPN. The three elements of the FMEA are used as five linguistic terms. The membership functions as triangular fuzzy sets are the simplest models defined by the three elements. In addition, a fuzzy set is described using a membership function mapping the elements to the intervals 0 and 1. The fuzzy rule base is designed to identify the failure modes according to the expert knowledge. The IF-THEN criterion of the fuzzy rule base is formulated to convert a fuzzy input into a fuzzy output. The total number of rules is 125 in the fuzzy rule base. The SAM expresses the judgment corresponding to the individual experiences of the experts performing FMEA as weights. Implementing the SAM is of significance when operating fuzzy sets regarding the expert opinion and can confirm the concurrence of expert opinion. The GTM can perform defuzzification to obtain a crisp value from a fuzzy membership function and determine the priorities by considering the degree of relation and the form of a matrix and weights for the severity, occurrence, and detectability. The proposed models prioritize the failure modes of the rotorcraft landing system. The conventional FMEA and fuzzy rule base can set the same priorities. SAM and GTM can set different priorities with objectivity through weight setting.

Application of FMECA with Stochastic Approach to Reliability-Centered Maintenance of Electric Power Plants in Korean Power Systems (RCM 수립을 위해 발전설비의 고장확률을 고려한 확률론적 FMECA 평가 기법)

  • Joo, Jae-Myung;Lee, Seung-Hyuk;Kim, Jin-O;Lee, Hyo-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.196-197
    • /
    • 2006
  • Preventive maintenance can avail the generation utilities to reduce cost and gain more profit in a competitive supply-side power market. So, it is necessary to perform reliability analysis on the systems in which reliability is essential. In this paper, RCM (Reliability -Centered Maintenance) analytical method is adopted using real historical failure data in Korean power plants. Therefore, the reliability -based Probability model for predicting the failures of components in the power plant is also established, and application to FMECA(Failure Mode Effects and Critical Analysis) consideration of failure probability, Based on the weighting ranking of generating equipments which status to be probability estimation by FMECA. The FMECA is an engineering analysis and a core activity performed by reliability engineers to review the effects of probable failure modes of generating equipments and assemblies of the power system on system performance. The results of this paper show that application of FMECA with stochastic approach to the preventive maintenance can efficiently avail decreasing the cost on maintenance and hence improve the total benefit.

  • PDF

Behavior and simplified analysis of steel-concrete composite beams subjected to localized blast loading

  • Li, Guo-Qiang;Yang, Tao-Chun;Chen, Su-Wen
    • Structural Engineering and Mechanics
    • /
    • v.32 no.2
    • /
    • pp.337-350
    • /
    • 2009
  • Finite element simulations are increasingly used in structural analysis and design, especially in cases where complex structural and loading conditions are involved. Due to considerable progresses in computer technology as well as nonlinear finite-element analysis techniques in past years, it has become possible to pursue an accurate analysis of the complex blast-induced structural effects by means of numerical simulations. This paper aims to develop a better understanding of the behavior of steel-concrete composite beams (SCCB) under localized blast loading through a numerical parametric study. A finite element model is set up to simulate the blast-resistant features of SCCB using the transient dynamic analysis software LS-DYNA. It is demonstrated that there are three dominant failure modes for SCCB subjected to localized blast loading. The effect of loading position on the behavior of SCCB is also investigated. Finally, a simplified model is proposed for assessing the overall response of SCCB subjected to localized blast loading.

Development of the FMECA Process and Analysis Methodology for the Railroad System (철도시스템 FMECA 수행 절차 및 분석 기법 개발에 관한 연구)

  • Park, Kwon-Shik;Kim, Tae-Woong;Jeong, Hyun-Yong;Park, Jun-Seo
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.251-261
    • /
    • 2006
  • FMEA(Failure Mode and Effects) is a procedure for the analysis of a system to identify the potential failure modes, and their effects and causes to reduce or mitigate the critical effects of the system. Recently, FMEA is used in various industries and it is specialized in each industry. For instance, MIL-1629a in Military industry, SAE-J1739 in Automotive industry and other industry are using specialized FMEA method. Though Railroad industry requires the high reliability system, it does not have the FMEA method which is specialized to them. So in this paper, we examined the MIL-1629a, SAE-J1739, IEC-60812 and compared those standards. Furthermore, we propose the FMEA method that is specialized to the railroad system.

  • PDF

A Study on FMEDA Process for SIL Certification : A Case Study of a Flame Scanner (SIL 인증을 위한 FMEDA 프로세스 연구 : 화염검출기 사례를 중심으로)

  • Kim, Sung Kyu;Kim, Yong Soo
    • IE interfaces
    • /
    • v.25 no.4
    • /
    • pp.422-430
    • /
    • 2012
  • In this article, we introduced the estimation method by 'Safety Integrity Level'(SIL) for the criterion of safety assurance and performed a case study on a flame scanner. SIL requires probabilistic evaluation of each set of equipment used to reduce risk in a safety related system. FMEDA(Failure Modes, Effects and Diagnostic Analysis) method is widely used to evaluate the safety levels and provides information on the failure rates and failure mode distributions necessary to calculate a diagnostic coverage factor for a part or a component. Basically, two parameters resulting from FMEDA are used for SIL classification of the device : SFF(Safe Failure Fraction) and PFD(Probability of Failure on Demand). In this case study, it is concluded that the flame scanner is designed to fulfill the condition of SIL 3 in the aspect of SFF and PFD.

Accelerated Life Test and Analysis of Track Drive Unit for an Excavator (주행 구동 유니트의 가속 수명 시험 및 분석)

  • Lee Y.B.;Park J.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.2 no.2
    • /
    • pp.1-7
    • /
    • 2005
  • For the reliability evaluation of the track drive unit(TDU), firstly, we analyzed the major failure modes through FMEA(failure mode & effects analysis), FTA(failure tree analysis), and 2-stage QFD(quality function deployment), and then quantitatively determined the priority order of test items. The Minitab analysis was also performed for prediction of life distribution and parameters of TDU by use of field failure data collected from 430 excavators for two years. In addition, we converted the fluctuation load in field conditions into the equivalent load, and for evaluation of the accelerated lift by the cumulative fatigues, the equivalent load is again divided into the fluctuation load by reference of test time. And then, by use of the test method in this paper, the acceleration factor(AF) of needle bearing inside planetary gear which is the most weakly designed part of TDU is achieved as 5.3. This paper presents the quantitative selection method of test items for reliability evaluation, the determination method of the accelerated life test time, and the method of non-failure test time based on a few of samples. And, we proved the propriety of the proposed methods by experiments using a TDU for a 30 ton excavator.

  • PDF