• 제목/요약/키워드: Failure locations

검색결과 235건 처리시간 0.027초

Development of Risk Rating and Index for Coastal Activity Locations

  • Lee, Young-Jai;Jung, Cho-Young;Gu, Ja-Yeong
    • 해양환경안전학회지
    • /
    • 제26권3호
    • /
    • pp.227-232
    • /
    • 2020
  • This paper develops a risk index based on an indicator of risk assessment in terms of coastal activity location and accident type. The risk index is derived from a formula which adds the consequence of failure to a vulnerability value, then subtracts the mitigation value. Specifically, the consequence of failure is the number of casualties in coastal activity locations. An indicator of vulnerability refers to coastal environment elements and social elements. A pointer of mitigation includes managerial and organizational elements that indicate the capabilities of coastal activities. A risk rating of coastal activity location is found from a risk matrix consisting of the accident location and type. The purpose of this study is to prevent accidents at coastal activity locations by allowing the Coastal police guard to monitor effectively and inform visitors of potential risks.

민감도 해석을 이용한 센서의 최적 위치 선정에 관한 연구 (A Study on Optimal Sensor Placement Using Sensitivity Analysis)

  • 손인수;이두호
    • 한국소음진동공학회논문집
    • /
    • 제21권3호
    • /
    • pp.241-247
    • /
    • 2011
  • Although intensive development continues on innovative sensor systems, there is still considerable uncertainty in deciding on the number of sensors required and their locations in order to obtain adequate information on structural behavior. This paper is concerned with the sensor locations on a beam-structure for prognostic structural health monitoring. The purpose of this study is to investigate how to determine optimal sensor placement(OSP) from the sensitivity information of a known failure mode. The sensitivity of the forced vibration response of a beam to the variation of stiffness due to a crack is calculated analytically and used to determine the optimal sensor locations for the specified failure mode. The results of this method compared with the results of different OSP methods. The results have shown that the proposed method on optimal sensor placement is very effective in structural health monitoring.

볼베어링으로 지지된 회전축의 이상상태 진단을 위한 진단전문가 시스템의 개발 (Development of Diagnostic Expert System for Rotating Machinery Failure Diagnosis)

  • 유송민;김영진;박상신
    • 한국정밀공학회지
    • /
    • 제15권11호
    • /
    • pp.218-226
    • /
    • 1998
  • In this study a neural network based expert system designed to diagnose operating status of a rotating spindle system supported by ball bearings was introduced. In order to facilitate practical failure situations, five exemplary abnormal status was fabricated. Out of several possible data source locations, seven most effective spots were chosen and proven to be the most successful in predicting single and multiple abnormalities. Increased signal strength was measured around where abnormality was embedded. Signal mea-surement locations producing high prediction rate were also classified. Even though multiple abnormalities were hard to be decoupled into their individual causes, proposed diagnostic system was somewhat effective in predicting such cases under certain combination of sensor locations. Among several abnormal operating conditions, highest prediction rate can be expected when signal is spoiled by the failure or damage in outer race. Proposed diagnostic system was again proven to be the most effective system in analyzing and ranking the importance of data sources.

  • PDF

Strength Analysis of Mark III Cargo Containment System using Anisotropic Failure Criteria

  • Jeong, Han Koo;Yang, Young Soon
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제1권4호
    • /
    • pp.211-226
    • /
    • 2015
  • Membrane type Mark III cargo containment system (CCS) is considered in this study to investigate its strength capability under applied loads due to liquefied natural gas (LNG) cargo. A rectangular plated structure supported by inner hull structure is exemplified from Mark III CCS according to classification society's guidance and it is assumed as multi-layered structure by stacking plywood, triplex, reinforced polyurethane (PU) foam and series of mastic upon inner hull structure. Commercially available general purpose finite element analysis package is used to have reliable FE models of Mark III CCS plate. The FE models and anisotropic failure criteria such as maximum stress, Hoffman, Hill, Tsai-Wu and Hashin taking into account the direction dependent material properties of Mark III CCS plate components and their material properties considering a wide variation of temperature due to the nature of LNG together form the strength analysis procedure of Mark III CCS plate. Strength capability of Mark III CCS plate is understood by its initial failure and post-initial failure states. Results are represented in terms of failure loads and locations when initial failure and post-initial failures are occurred respectively. From the results the basic design information of Mark III CCS plate is given.

Position Optimization of Strain Gauge on Blades

  • Choi, Byeong-Keun;Lee, Hyun-Seob;Yang, Bo-Suk;Mignolet, Marc P.
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.422-427
    • /
    • 2002
  • This paper focuses on the formulation and validation of an automatic strategy for the selection of the locations and directions of strain gauges to capture at best the modal response of a blade in a series of modes. These locations and directions are selected to render the strain measurements as robust as possible with respect to random mispositioning of the gauges and gauge failures. The approach relies on the evaluation of the signal-to-noise ratios of the gauge measurements from finite element strain data and includes the effects of gauge size. A genetic algorithm is used to find the strain gauge locations-directions that lead to the largest possible value of the smallest modal strain signal-to-noise ratio, in the absence of gauge failure, or of its expected value when gauge failure is possible. A fan blade is used to exemplify the applicability of the proposed methodology and to demonstrate the effects of the essential parameters of the problem, i.e. the mispositioning level, the probability of gauge failure, and the number of gauges.

  • PDF

파열 시험을 통한 감육곡관의 손상압력에 미치는 원주방향 결함 폭과 굽힘하중의 영향 평가 (Evaluating on the Effects of Circumferential Thinning Angle and Bending Load on the Failure Pressure of Wall-Thinned Elbow through Burst Tests)

  • 김진원;나연수;이성호
    • 한국안전학회지
    • /
    • 제21권6호
    • /
    • pp.14-19
    • /
    • 2006
  • This study performed burst tests using real-scale pipe elbow containing simulated local wall-thinning to evaluate the effects of circumferential thinning angle and bending load on the failure pressure of wall-thinned elbow. The tests were carried out under the loading conditions of internal pressure and combined internal pressure and bending loads. Three circumferential thinning angles, ${\theta}/{\Pi}=0.125,\;0.25,\;0.5$, and different thinning locations, intrados and extrados, were considered. The test results showed that the failure pressure of wall-thinned elbow decreased with increasing circumferential thinning angle for both thinning locations. This tendency is different from that observed in the wall-thinned straight pipe. Also, the failure pressure of intrados wall-thinned elbow was higher than that of extrados wall-thinned elbow with the same thinning depth and equivalent thinning length. In addition, the effect of bending moment on the failure pressure was not obvious.

Experimental Study on the Structural Safety of the Tractor Front-End Loader Against Impact Load

  • Park, Young-Jun;Shim, Sung-Bo;Nam, Ju-Seok
    • Journal of Biosystems Engineering
    • /
    • 제41권3호
    • /
    • pp.153-160
    • /
    • 2016
  • Purpose: This study was conducted to experimentally investigate the structural safety of and identify critical locations in a front-end loader under impact loads. Methods: Impact and static tests were conducted on a commonly used front-end loader mounted on a tractor. In the impact test, the bucket of the front-end loader with maximum live load was raised to its maximum lift height and was allowed to free fall to a height of 500 mm above the ground where it was stopped abruptly. For the static test, the bucket with maximum live load was raised and held at the maximum lift height, median height, and a height of 500 mm from the ground. Strain gages were attached at twenty-three main locations on the front-end loader, and the maximum stresses and strains were measured during respective impact and static tests. Results: Stresses and strains at the same location on the loader were higher in the impact test than in the static test, for most of measurement locations. This indicated that the front-end loader was put under a severe environment during impact loading. The safety factors for stresses were higher than 1.0 at all locations during impact and static tests. Conclusions: Since the lowest safety factor was higher than 1.0, the front-end loader was considered as structurally safe under impact loads. However, caution must be exercised at the locations having relatively low safety factors because failure may occur at these locations under high impact loads. These important design locations were identified to be the bucket link elements and the connection elements between the tractor frame and front-end loader. A robust design is required for these elements because of their high failure probability caused by excessive impact stress.

Experimental and analytical investigation on seismic behavior of RC framed structure by pushover method

  • Sharma, Akanshu;Reddy, G.R.;Eligehausen, R.;Vaze, K.K.
    • Structural Engineering and Mechanics
    • /
    • 제39권1호
    • /
    • pp.125-145
    • /
    • 2011
  • Pushover analysis has gained significant popularity as an analytical tool for realistic determination of the inelastic behaviour of RC structures. Though significant work has been done to evaluate the demands realistically, the evaluation of capacity and realistic failure modes has taken a back seat. In order to throw light on the inelastic behaviour and capacity evaluation for the RC framed structures, a 3D Reinforced concrete frame structure was tested under monotonically increasing lateral pushover loads, in a parabolic pattern, till failure. The structure consisted of three storeys and had 2 bays along the two orthogonal directions. The structure was gradually pushed in small increments of load and the corresponding displacements were monitored continuously, leading to a pushover curve for the structure as a result of the test along with other relevant information such as strains on reinforcement bars at critical locations, failure modes etc. The major failure modes were observed as flexural failure of beams and columns, torsional failure of transverse beams and joint shear failure. The analysis of the structure was by considering all these failure modes. In order to have a comparison, the analysis was performed as three different cases. In one case, only the flexural hinges were modelled for critical locations in beams and columns; in second the torsional hinges for transverse beams were included in the analysis and in the third case, joint shear hinges were also included in the analysis. It is shown that modelling and capturing all the failure modes is practically possible and such an analysis can provide the realistic insight into the behaviour of the structure.

상수관 파괴시 관망의 부분적 격리를 고려한 피해범위 산정 (An evaluation of the pipe failure impact in a water distribution system considering subsystem isolation)

  • 전환돈
    • 한국수자원학회논문집
    • /
    • 제39권2호
    • /
    • pp.89-98
    • /
    • 2006
  • 기존의 상수관 파괴로 인한 피해 영역의 산정에서는 파괴된 관만을 피해영역으로 고려하였으나 이는 파괴된 관만이 차폐되었을 경우에만 정확하다 할 수 있다. 차폐에 이용되는 밸브의 배치에 따라 추가로 더 많은 관들이 파괴된 관과 함께 차폐가 될 수 있으며 Walski에 의하여 제안된 segment 개념으로 이러한 추가적인 관의 차폐를 고려할 수 있는 방법이 Jun에 의해서 개발되었다. 그러나, segment 개념으로 찾아질 수 있는 피해영역보다 더 많은 부분이 관 파괴의 영향을 받을 수 있으며, 이는 관들의 연결형상에 의한 차폐와 용수 수요지점에서 적정한 압력수두를 확보하지 못하여 발생하는 추가적인 피해에 기인한다 본 연구에서는 밸브의 위치에 따른 추가적인 피해영역과 함께 관들의 연결형상 그리고 압력수두에 따른 피해를 순차적으로 고려할 수 있는 방법을 제안하여 제안된 방법을 실제 상수관망에 적용하여 적용성을 검토한다 실제 상수관망에 적용한 결과 한 개의 상수관 파괴에 의한 피해 영역이 밸브위치와 용수노선의 설계에 따라 많은 지역에 피해를 발생시킬 수 있음을 보여 주고 있다. 따라서 본 연구에서 제안된 방법을 적용하여 산정된 상수관 파괴에 따른 피해영역이 현실을 정확히 반영함을 알 수 있었다.

진동측정을 위한 스트레인 게이지 설치위치 최적화 : 최적화 방법 및 평가 (Optimal Placement of Strain Gauge for Vibration Measurement : Formulation and Assessment)

  • 최창림;양보석;최병근
    • 한국소음진동공학회논문집
    • /
    • 제14권8호
    • /
    • pp.757-766
    • /
    • 2004
  • This paper focuses on the formulation and validation of an automatic strategy to select the optimal location and direction of strain gauges for the measurement of the modal response. These locations and directions are important to render the strain measurements as robust as possible when a random mispositioning of the gauges and gauge failures are expected. The approach relies on the evaluation of the signal-to-noise ratios of the gauge measurements from strain data of finite element. The multi-step optimization strategy including genetic algorithm is used to find the strain gauge locations-directions that maximize the smallest modal strain signal-to-noise ratio in the absence of gauge failure or its expected value when gauge failure is possible. A flat Plate is used to prove the applicability of the proposed methodology and to demonstrate the effects of the essential parameters of the problem such as the mispositioning level, the probability of gauge failure, and the number of gauges.