• 제목/요약/키워드: Failure factors

검색결과 2,429건 처리시간 0.033초

Prediction of lifespan and assessing risk factors of large-sample implant prostheses: a multicenter study

  • Jeong Hoon Kim;Joon-Ho Yoon;Hae-In Jeon;Dong-Wook Kim;Young-Bum Park;Namsik Oh
    • The Journal of Advanced Prosthodontics
    • /
    • 제16권3호
    • /
    • pp.151-162
    • /
    • 2024
  • PURPOSE. This study aimed to analyze factors influencing the success and failure of implant prostheses and to estimate the lifespan of prostheses using standardized evaluation criteria. An online survey platform was utilized to efficiently gather large samples from multiple institutions. MATERIALS AND METHODS. During the one-year period, patients visiting 16 institutions were assessed using standardized evaluation criteria (KAP criteria). Data from these institutions were collected through an online platform, and various statistical analyses were conducted. Risk factors were assessed using both the Cox proportional hazard model and Cox regression analysis. Survival analysis was conducted using Kaplan-Meier analysis and nomogram, and lifespan prediction was performed using principal component analysis. RESULTS. The number of patients involved in this study was 485, with a total of 841 prostheses evaluated. The median survival was estimated to be 16 years with a 95% confidence interval. Factors found to be significantly associated with implant prosthesis failure, characterized by higher hazard ratios, included the 'type of clinic', 'type of antagonist', and 'plaque index'. The lifespan of implant prostheses that did not fail was estimated to exceed the projected lifespan by approximately 1.34 years. CONCLUSION. To ensure the success of implant prostheses, maintaining good oral hygiene is crucial. The estimated lifespan of implant prostheses is often underestimated by approximately 1.34 years. Furthermore, standardized form, online platform, and visualization tool, such as nomogram, can be effectively utilized in future follow-up studies.

Cone-Beam CT-Guided Percutaneous Transthoracic Needle Lung Biopsy of Juxtaphrenic Lesions: Diagnostic Accuracy and Complications

  • Wonju Hong;Soon Ho Yoon;Jin Mo Goo;Chang Min Park
    • Korean Journal of Radiology
    • /
    • 제22권7호
    • /
    • pp.1203-1212
    • /
    • 2021
  • Objective: To investigate the diagnostic accuracy and complications of cone-beam CT-guided percutaneous transthoracic needle biopsy (PTNB) of juxtaphrenic lesions and identify the risk factors for diagnostic failure and complications. Materials and Methods: In total, 336 PTNB procedures for lung lesions (mean size ± standard deviation [SD], 4.3 ± 2.3 cm) abutting the diaphragm in 326 patients (189 male and 137 female; mean age ± SD, 65.2 ± 11.4 years) performed between January 2010 and December 2014 were included. The accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of the PTNB procedures for the diagnosis of malignancy were measured based on the intention-to-diagnose principle. The risk factors for diagnostic failures and complications were evaluated using logistic regression analysis. Results: The accuracy, sensitivity, specificity, PPV, and NPV were 92.7% (293/316), 91.3% (219/240), 91.4% (74/81), 96.9% (219/226), and 77.9% (74/95), respectively. There were 23 diagnostic failures (7.3%), and lesion sizes ≤ 2 cm (p = 0.045) were the only significant risk factors for diagnostic failure. Complications occurred in 98 cases (29.2%), including 89 cases of pneumothorax (26.5%) and 7 cases of hemoptysis (2.1%). The multivariable analysis showed that old age (> 65 years) (p = 0.002), lesion size of ≤ 2 cm (p = 0.003), emphysema (p = 0.006), and distance from the pleura to the target lesion (> 2 cm) (p = 0.010) were significant risk factors for complications. Conclusion: The diagnostic accuracy of cone-beam CT-guided PTNB of juxtaphrenic lesions for malignancy was fairly high, and the target lesion size was the only significant predictor of diagnostic failure. Complications of cone-beam CT-guided PTNB of juxtaphrenic lesions occurred at a reasonable rate.

점용접시편의 극한하중과 피로특성에 관한 실험적 고찰 (An Experimental Investigation of Limit Loads and Fatigue Properties of Spot Welded Specimens)

  • 이형일;김남호;이태수
    • 대한기계학회논문집A
    • /
    • 제24권1호
    • /
    • pp.38-51
    • /
    • 2000
  • The study on the mechanical behavior of a spot-welded specimen is largely divided into the quasi-static overload failure analysis and the fatigue failure prediction. The main issue in an overload analysis is to examine the critical loads, thereby providing a generalized overload failure criterion. As the welding spot forms a singular geometry of an external crack type, fatigue failure of spot-welded specimens can be evaluated by means of a fracture parameter. In this study, we first present the limit loads of 4 representative types of single spot-welded specimens in terms of the base metal yield strength and specimen geometries. Recasting the load vs. fatigue life relationships experimentally, obtained here, we then predict the fatigue life of spot-weld specimens with a single parameter denoted the equivalent stress intensity factor. This crack driving parameter is demonstrated to successfully describe the effects of specimen geometry and loading type in a comprehensive manner. The suggested fatigue life formula for a single spot weld can play a key, role in the design and assessment of spot-welded panel structures, in that the fatigue strength of multi-spots is eventually determined by the fatigue strength of each single spot.

석유화학 플랜트 프로젝트 상세설계 실패사례활용방안에 대한 연구 (Utilization of Failure Examples in Detail Design for Oil and Petrochemical Plant Project)

  • 강태영;문승재;유호선
    • 플랜트 저널
    • /
    • 제5권2호
    • /
    • pp.62-67
    • /
    • 2009
  • The capability of design and engineering of global EPC companies has long been equalized through past similar construction experiences. Among various key factors in the success of EPC project, the capability of engineering is considered to be the most important factor since the engineering is preceding activities of EPC contract. The failure of engineering may adversely affect the subsequent procurement & construction activities and in turn may cause cost overrun or schedule delay. Therefore, an EPC company needs to continue to improve the engineering capabilities for the success of project. The engineering capabilities can be further improved if the EPC company should prevent recurrence of similar design faults that were previously committed. This study is intended to present how to make the most of the failure examples from previous projects towards a success of project. Failure is but a stepping stone to success. The EPC company can obtain useful lessons from the analysis of past failure examples.

  • PDF

파레토 및 어랑 형상모수에 의존한 수명분포를 따르는 소프트웨어 신뢰성 모형에 대한 신뢰도 특성요인 비교 연구 (A Comparison of Reliability Factors of Software Reliability Model Following Lifetime Distribution Dependent on Pareto and Erlang Shape Parameters)

  • 김희철;문송철
    • Journal of Information Technology Applications and Management
    • /
    • 제24권2호
    • /
    • pp.71-80
    • /
    • 2017
  • Software reliability is one of the most elementary and important problems in software development In order to find the software failure occurrence, the instantaneous failure rate function in the Poisson process can have a constant, incremental or decreasing tendency independently of the failure time. In this study, we compared the reliability performance of the software reliability model using the parameters of Pareto life distribution with the intensity decreasing pattern and the shape parameter of Erlang life distribution with the intensity increasing and decreasing pattern in the software product testing. In order to identify the software failure environment, the parametric estimation was applied to the maximum likelihood estimation method. Therefore, in this paper, we compare and evaluate software reliability by applying software failure time data. The reliability of the Erlang and Pareto life models is shown to be higher than that of the Pareto lifetime distribution model when the shape parameter is higher and the Erlang model is more reliable when the shape parameter is higher. Through this study, the software design department will be able to help the software design by applying various life distribution and shape parameters, and providing basic knowledge using software failure analysis.

Probabilistic Fracture Mechanics Analysis of Boling Water Reactor Vessel for Cool-Down and Low Temperature Over-Pressurization Transients

  • Park, Jeong Soon;Choi, Young Hwan;Jhung, Myung Jo
    • Nuclear Engineering and Technology
    • /
    • 제48권2호
    • /
    • pp.545-553
    • /
    • 2016
  • The failure probabilities of the reactor pressure vessel (RPV) for low temperature over-pressurization (LTOP) and cool-down transients are calculated in this study. For the cool-down transient, a pressure-temperature limit curve is generated in accordance with Section XI, Appendix G of the American Society of Mechanical Engineers (ASME) code, from which safety margin factors are deliberately removed for the probabilistic fracture mechanics analysis. Then, sensitivity analyses are conducted to understand the effects of some input parameters. For the LTOP transient, the failure of the RPV mostly occurs during the period of the abrupt pressure rise. For the cool-down transient, the decrease of the fracture toughness with temperature and time plays a main role in RPV failure at the end of the cool-down process. As expected, the failure probability increases with increasing fluence, Cu and Ni contents, and initial reference temperature-nil ductility transition ($RT_{NDT}$). The effect of warm prestressing on the vessel failure probability for LTOP is not significant because most of the failures happen before the stress intensity factor reaches the peak value while its effect reduces the failure probability by more than one order of magnitude for the cool-down transient.

A numerical approach for assessing internal pressure capacity at liner failure in the expanded free-field of the prestressed concrete containment vessel

  • Woo-Min Cho;Seong-Kug Ha;SaeHanSol Kang;Yoon-Suk Chang
    • Nuclear Engineering and Technology
    • /
    • 제55권10호
    • /
    • pp.3677-3691
    • /
    • 2023
  • Since containment building is the major shielding structure to ensure safety of nuclear power plant, the structural behavior and ultimate pressure capacity of containments must be studied in depth. This paper addresses ambiguous issue of determining free-field position for liner failure by suggesting an expanded free-field region and comparing internal pressure capacities obtained by test data, conservative assumption and suggested free-field region. For this purpose, a practical approach to determine the free-field position for the evaluation of liner tearing is carried out. The maximum principal strain histories versus internal pressure capacities among different free-field positions at various azimuths and elevations are compared with those at the equipment hatch as a conservative assumption. The comparison shows that there are considerable differences in the internal pressure capacity at liner failure within the expanded free-field region compared to the vicinity of the equipment hatch. Additionally, this study proposes an approximate correlation with conservative factors by considering the expanded free-field ranges and material characteristics to determine realistic failure criteria for liner. The applicability of the proposed correlation is demonstrated by comparing the internal pressure capacities of full-scale containment buildings following liner failure criteria according to RG 1.216 and an approximate correlation.

$\cdot$하악 대구치 부위에 식립된 임플란트의 생존율에 대한 후향적 연구 (Survival analysis of dental implants in maxillary and mandibular molar regions; A 4$\sim$5 year report)

  • 장진화;류경호;정현주
    • Journal of Periodontal and Implant Science
    • /
    • 제37권2호
    • /
    • pp.165-180
    • /
    • 2007
  • Dental Implants have been proved to be successful prosthetic modality in edentulous patients for 10 years. However, there are few reports on the survival of implant according to location in molar regions. The purpose of this study was to evaluate the $4{\sim}5$ years' cumulative survival rate and the cause of failure of dental implants in different locations for maxillary and mandibular molars. Among the implants placed in molar regions in Gwangju Mir Dental Hospital from Jan. 2001 to Jun. 2002, 473 implants from 166 patients(age range; $26{\sim}75$) were followed and evaluated retrospectively for the causes of failure. We included 417 implants in 126 periodontally compromised patients, 56 implants in 40 periodontal healthy patients, and 205 maxillary and 268 mandibular molar implants. Implant survival rates by various subject factors, surgical factors, fixture factors, and prosthetic factors at each location were compared using Chi-square test and Kaplan-Meier cumulative survival analysis was done for follow-up(FU) periods. The overall failure rate at 5 years was 1O.2%(subject level) and 5.5%(implant level). The overall survival rates of implants during the FU periods were 94.5% with 91.3% in maxillary first molar, 91.1% in maxillary second molar, 99.2% in mandibular first molar and 94,8% in mandibular second molar regions. The survival rates differed significantly between both jaws and among different implant locations(p<0.05), whereas the survival rates of functionally loaded implants were similar in different locations. The survival rates were not different according to gender, age, previous periodontal status, surgery stage, bone graft type, or the prosthetic type. The overall survival rate was low in dental implant of too wide diameter(${\geq}5.75$ mm) and the survival rate was significantly lower for wider implant diameter(p

Three-Hinge 파괴의 메커니즘 및 안정성에 관한 분석 (A Study on the Stability and Mechanism of Three-Hinge Failure)

  • 문준식;박우정
    • 한국지반공학회논문집
    • /
    • 제33권4호
    • /
    • pp.5-15
    • /
    • 2017
  • 3힌지파괴(three-hinge failure)는 비탈면 방향과 평행한 절리와 그에 직교하는 절리로 구성된 암반비탈면에서 발생한다. 비탈면 설계 시 일반적으로 쓰이는 한계평형법과 유한요소법은 이러한 암반비탈면 내 3힌지파괴를 모사하기에는 어려움이 따른다. 따라서 본 연구에서는 3힌지파괴를 모사하기 위해 2차원 DEM 해석프로그램인 UDEC을 이용하여 풋월 비탈면에서 흔히 발생되는 3힌지파괴의 메커니즘 및 안정성에 미치는 영향 인자에 대하여 매개변수 분석을 연구하였다. 매개변수 분석은 암반절리(층면절리, 공액절리 등)의 구조 및 지하수위 조건 등을 변경하여 수행하였다. 수치해석 결과, 3힌지파괴를 유발하는 인자 중 지하수위의 영향이 가장 큰 것으로 나타났으며, 층면절리 및 기저부절리의 마찰각 변화에 따라 안전율과 파괴 형태가 다르게 나타나는 것으로 분석되었다. 본 연구결과를 통해 비탈면 보강을 포함한 풋월 비탈면의 최적설계 및 시공에 적용될 수 있을 것으로 판단된다.

The Effect of Usage and Storing Conditions on John Deere 3140 Tractor Failures in Khouzestan Province, Iran

  • Afsharnia, Fatemeh;Marzban, Afshin
    • Journal of Biosystems Engineering
    • /
    • 제42권2호
    • /
    • pp.75-79
    • /
    • 2017
  • The use of tractors to carry out agricultural work has played an important role in mechanizing the agricultural sector. A repairable mechanical system (such as an agricultural tractor) is subject to deterioration or failure. In this study, a regression model was used to predict the failure rate of a John Deere 3140 tractor. The machine failure pattern was carefully studied, and key factors affecting the failure rate were identified in five regions of the Khouzestan province. Through a questionnaire, data was obtained from farm records. This data was grouped into six sub-groups, according to the annual use hours (AUH) and the manner in which the tractors were stored. Results showed that AUH and storage policies affected failure rate slightly. With an increase in the age of the tractors, the failure rate in the tractors used for 1050-2000 hours annually and stored outdoors was higher than those used for 200-1000 hours annually and stored in sheds. When the tractors were of the same age, the slope of the curve in the 200-1000 annual use hours increased gradually and then rapidly, but failure rate in the 1050-2000 annual use hours was high from the beginning, and subsequent increase in this value was almost uniform. As a result, it can be said that with an increase in the annual use hours, the failure and breakdown rate in John Deere 3140 tractors rapidly increases, but maintenance conditions only slightly affect the failure and breakdown rate.