• 제목/요약/키워드: Failure Probability

검색결과 1,262건 처리시간 0.026초

파손확률 모델을 이용한 솔더 조인트의 건전성 평가 (Reliability Estimation of Solder Joint by Using Failure Probability Model)

  • 명노훈;이억섭;김동혁
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.365-370
    • /
    • 2004
  • Generally, component and FR-4 board are connected by solder joint. Because material properties of components and FR-4 board are different, component and FR-4 board show different coefficients of thermal expansion (CTE) and thus strains in component and board are different when they are heated. That is, the differences in CTE of component and FR-4 board cause the dissimilarity in shear strain and solder joint' failure. The first order Taylor series expansion of the limit state function incorporating with Tresca failure criterion is used in order to estimate the failure probability of solder joints under heated condition. Using shear stresses and shear strains appeared on the solder joint, we estimate the failure probability of solder joints with the Tresca failure criterion. The effects of random variables such as CTE, distance of the solder joint from the neutral point(DNP), temperature variation and height of solder on the failure probability of the solder joint are systematically studied by using the failure probability model with first order reliability method(FORM).

  • PDF

매설배관의 경계조건이 파손확률에 미치는 영향 (Effect of Boundary Conditions on Failure Probability of Buried Pipeline)

  • 이억섭;편장식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.311-316
    • /
    • 2001
  • A failure probability model based on Von-Mises failure criterion and the standard normal probability function is proposed. The effects of varying boundary conditions such as internal fluid pressure, external soil, traffic loads, temperature change and corrosion on failure probability of the buried pipes are systematically investigated. To allow for the uncertainties of the design variables, a reliability analysis technique has been adopted; this also allows calculation of the relative contribution of the random variables and the sensitivity of the failure probability.

  • PDF

매설된 강 파일의 경계조건이 파손확률에 미치는 영향 (Effect of Boundary Conditions on Failure Probability of Buried Steel Pile)

  • 이억섭;편장식;김의상
    • 한국정밀공학회지
    • /
    • 제20권4호
    • /
    • pp.204-213
    • /
    • 2003
  • A survey for finding corrosion examples was performed on the underground steel piles buried for 19 years in the area of iron and steel making factory near Young-il bay. A failure probability model, which can be used to check the reliability of the corrosive mechanical element, based on Von-Mises failure criterion and the standard normal probability function is proposed. The effects of varying boundary conditions such as temperature change, soil-friction, internal pressure, earthquake, loading of soil, traffic loads and corrosion on failure probability of the buried steel piles are systematically investigated. To allow for the uncertainties of the design variables, a reliability analysis technique has been adopted; this also allows calculation of the relative contribution of the random variables and the sensitivity of the failure probability.

고장 보고율을 이용한 현장 수명자료 분포의 모수추정

  • 박태웅;김영복;이창훈
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회/대한산업공학회 2005년도 춘계공동학술대회 발표논문
    • /
    • pp.678-685
    • /
    • 2005
  • Estimating parameters of the lifetime distribution is investigated when field failure data are not completely reported. To take into account the reality and the accuracy of the estimates in such a case, the failure reporting probability is incorporated in estimating parameters. Firstly, method of maximum likelihood estimate(MLE) is used to estimate parameters of the lifetime distribution when failure reporting probability is known. Secondly, Expectation and Maximization(EM) algorithm is used to estimate the failure reporting probability and parameters of the lifetime distribution simultaneously when failure reporting probability is unknown. For both case, procedures of estimation are illustrated for single Weibull distribution and mixed Weibull distribution. Simulation results show that MLE obtained by the proposed method is more accurate than the conventional MLE.

  • PDF

Surge Tank가 설치된 상수도관망에서 부정류를 고려한 불능확률 산정 (Calculation of Probability of System Failure for Pipe Network with Surge Tank regarding Unsteady Flow)

  • 권혁재;이철응
    • 상하수도학회지
    • /
    • 제23권3호
    • /
    • pp.295-303
    • /
    • 2009
  • In the present study, a reliability analysis calculating the probability of system failure has been performed using cut set and results of numerical analysis for unsteady flow in pipe. Especially, the probability of system failure has been evaluated regarding the effect of valve closure which is a really important activity in operation of piping system. In spite of small amount of demand, it was found that fast valve closure can generate high probability of system failure. Furthermore, it was confirmed that surge tank can reduce the unsteady effects and probability of system failure in water distribution system. From the results, it was found that the unsteady flow has a significant effect on the probability of system failure Furthermore, it was able to find which pipe or cut set has high probability of system failure. So it could be used to determine which pipe or cut set has a priority of repair and replacement. Therefore, reliability analysis regarding unsteady flow has to be performed for the planning, designing, maintenance, and operation of piping system.

지진파괴확률 영곡선 활용 국내 식수전용 흙댐의 지진 위험도 분류 사례 연구 (A Case Study on the Seismic Hazard Classification of Domestic Drinking Water Earthfill Dams Using Zero Seismic Failure Probability Curve)

  • 하익수
    • 한국지진공학회논문집
    • /
    • 제26권4호
    • /
    • pp.173-180
    • /
    • 2022
  • Most of the drinking water dams managed by the local governments in Korea are earthfill dams, and these dams have almost no geotechnical property information necessary for seismic performance evaluation. Nevertheless, in the rough planning stage for improving seismic safety for these dams, it is necessary to classify their relative seismic hazard against earthquakes and conduct an additional ground investigation. The zero seismic failure probability curve is a curve suggested in this study in which the probability of failure due to an earthquake becomes '0' regardless of the geotechnical properties of the earthfill dam. By examining the method and procedure for calculating failure probability due to an earthquake suggested in previous researches, the zero seismic failure probability curves for an earthquake in 1,000-year and 2,400-year return periods in Korea were presented in the form of a hyperbola on the plane of the dam height versus freeboard ratio (ratio of freeboard to dam height), respectively. The distribution characteristics of the dam height and the freeboard ratio of 81 Korean earthfill dams were presented. The two proposed zero seismic failure probability curves are shown on the plane of the dam height versus freeboard ratio, and the relative seismic hazard of 81 dams can be classified into three groups using these curves as boundaries. This study presented the method of classifying the relative seismic hazard and the classification result.

물류보관 랙선반시설물의 시스템신뢰성 해석 (System Reliability Analysis of Rack Storage Facilities)

  • 옥승용;김동석
    • 한국안전학회지
    • /
    • 제29권4호
    • /
    • pp.116-122
    • /
    • 2014
  • This study proposes a system reliability analysis of rack storage facilities subjected to forklift colliding events. The proposed system reliability analysis consists of two steps: the first step is to identify dominant failure modes that most contribute to the failure of the whole rack facilities, and the second step is to evaluate the system failure probability. In the first step, dominant failure modes are identified by using a simulation-based selective searching technique where the contribution of a failure mode to the system failure is roughly estimated based on the distance from the origin in the space of the random variables. In the second step, the multi-scale system reliability method is used to compute the system reliability where the first-order reliability method (FORM) is initially used to evaluate the component failure probability (failure probability of one member), and then the probabilities of the identified failure modes and their statistical dependence are evaluated, which is called as the lower-scale reliability analysis. Since the system failure probability is comprised of the probabilities of the failure modes, a higher-scale reliability analysis is performed again based on the results of the lower-scale analyses, and the system failure probability is finally evaluated. The illustrative example demonstrates the results of the system reliability analysis of the rack storage facilities subjected to forklift impact loadings. The numerical efficiency and accuracy of the approach are compared with the Monte Carlo simulations. The results show that the proposed two-step approach is able to provide accurate reliability assessment as well as significant saving of computational time. The results of the identified failure modes additionally let us know the most-critical members and their failure sequence under the complicated configuration of the member connections.

경쟁적 위험하에서의 신뢰성 분석 (Reliability Analysis under the Competing Risks)

  • 백재욱
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제16권1호
    • /
    • pp.56-63
    • /
    • 2016
  • Purpose: The purpose of this study is to point out that the Kaplan-Meier method is not valid to calculate the survival probability or failure probability (risk) in the presence of competing risks and to introduce more valid method of cumulative incidence function. Methods: Survival analysis methods have been widely used in biostatistics division. However the same methods have not been utilized in reliability division. Especially competing risks cases, where several causes of failure occur and the occurrence of one event precludes the occurrence of the other events, are scattered in reliability field. But they are not noticed in the realm of reliability expertism or they are analysed in the wrong way. Specifically Kaplan-Meier method which assumes that the censoring times and failure times are independent is used to calculate the probability of failure in the presence of competing risks, thereby overestimating the real probability of failure. Hence, cumulative incidence function is introduced and sample competing risks data are analysed using cumulative incidence function and some graphs. Finally comparison of cumulative incidence functions and regression type analysis are mentioned briefly. Results: Cumulative incidence function is used to calculate the survival probability or failure probability (risk) in the presence of competing risks and some useful graphs depicting the failure trend over the lifetime are introduced. Conclusion: This paper shows that Kaplan-Meier method is not appropriate for the evaluation of survival or failure over the course of lifetime. In stead, cumulative incidence function is shown to be useful. Some graphs using the cumulative incidence functions are also shown to be informative.

골조 파이프 구조물의 최적신뢰성 설계 (Reliability-Based Optimum Design for Tubular Frame Structures)

  • 백점기
    • 한국해양공학회지
    • /
    • 제2권1호
    • /
    • pp.95-105
    • /
    • 1988
  • This paper describes the development of a reliability-based optimum design technique for such three dimensional tubular frames as off shore structures. The objective function is formulated for the structural weight. Constraints that probability of failure for the critical sections does not exceed the allowable probability of failure are set up. In the evaluation of the probability of failure, fatigue as well as buckling and plasticity failure are taken into account and the mean-value first-order second-moment method(MVFOSM) is applied for its calculation. In order to reduce the computing time required for the repeated structural analysis in the optimization process, reanalysis method is also applied. Application to two and three dimensional simple frame structures is performed. The influence of material properties, external forces, allowable failure probabilities and interaction between external forces on the optimum design is investigated.

  • PDF

동적시스템의 신뢰도 평가를 위한 베이지안망의 적용 (An Application of Bayesian Network for Dynamic System Reliability Assessment)

  • 안선응;구정모
    • 산업경영시스템학회지
    • /
    • 제27권2호
    • /
    • pp.93-101
    • /
    • 2004
  • This paper is intended to assess a dynamic system reliability. Bayesian networks, however, have difficulties in their application for assessing the system reliability especially when the system consists of dependent components and the probability of failure of each component varies over time. Hence, we suggest a method for resolving the difficulties by considering a hoist system composed of two wires. Firstly, we explain the method of calculating the failure probability of the system components. Secondly, we show how to calculate the failure probability of the system for two cases that failure probability of each wire is constant and varying in time, respectively. finally, based on the calculated failure probability of the system, we infer the probability that two interesting events occur.