• 제목/요약/키워드: Failure Prevention

검색결과 663건 처리시간 0.03초

FMEA 기법을 활용한 공동주택 골조공사의 건설실패 핵심관리요인 분석 (An Analysis of Critical Management Factors for Construction Failure on the Apartment Structural Framework using FMEA)

  • 오치돈;박찬식
    • 한국건설관리학회논문집
    • /
    • 제13권3호
    • /
    • pp.78-88
    • /
    • 2012
  • 국내의 건설실패 관련 연구는 체계화된 실패정보 분류체계 및 실패정보의 활용을 위한 방안을 제시하는 것에 초점을 맞추고 있다. 그러나, 건설현장의 한정된 관리자가 건설실패를 유발하는 다양한 원인에 대한 예방대책을 수립하는 것은 한계가 있다. 따라서, 효율적인 건설실패 예방활동이 이루지기 위해서는 많은 실패원인에 대한 정량적 평가를 통해 우선순위를 정하여 효율적인 예방대책이 수립되어야 한다. 이에 본 연구는 정량적인 평가를 통해 실패를 유발하는 핵심관리요인을 도출 할 수 있도록 FMEA(Failure Mode and Effect Analysis) 기법을 활용한 건설실패 핵심관리요인 선정방법을 제시하고, 공동주택 골조공사를 대상으로 핵심관리요인을 분석하는 것을 목적으로 하였다. 이를 위해 FMEA 기법의 위험도를 실패 위험성과 예방성으로 구분하여 평가할 수 있도록 하였다. 본 연구에서 제시한 핵심관리요인 평가방법은 건설실패의 사전예방대책을 효율적으로 수립하는데 활용될 수 있으며, 향후 유사한 연구를 통해 프로젝트 수행 단계별 혹은 다양한 시설 및 공종에 대한 핵심관리요인을 도출하는데 활용될 수 있을 것으로 기대된다.

Nonlinear dynamics and failure wind velocity analysis of urban trees

  • Ai, Xiaoqiu;Cheng, Yingyao;Peng, Yongbo
    • Wind and Structures
    • /
    • 제22권1호
    • /
    • pp.89-106
    • /
    • 2016
  • With an aim to assess the wind damage to urban trees in more realistic conditions, the nonlinear dynamics of structured trees subjected to strong winds with different levels is investigated in the present paper. For the logical treatment of dynamical behavior of trees, material nonlinearities of green wood associated with tree biomechanics and geometric nonlinearity of tree configuration are included. Applying simulated fluctuating wind velocity to the numerical model, the dynamical behavior of the structured tree is explored. A comparative study against the linear dynamics analysis usually involved in the previous researches is carried out. The failure wind velocity of urban trees is then defined, whereby the failure percentages of the tree components are exposed. Numerical investigations reveal that the nonlinear dynamics analysis of urban trees results in a more accurate solution of wind-induced response than the classical linear dynamics analysis, where the nonlinear effect of the tree behavior gives rise to be strengthened as increasing of the levels of wind velocity, i.e., the amplitude of 10-min mean wind velocity. The study of relationship between the failure percentage and the failure wind velocity provides a new perspective towards the vulnerability assessment of urban trees likely to fail due to wind actions, which is potential to link with the practical engineering.

중학생의 안전실천과 인지실패가 안전사고에 미치는 영향 (Influences of Safety-Practice and Cognitive Failure on Safety Accident among Middle Students)

  • 정도영;이승호
    • 한국산학기술학회논문지
    • /
    • 제14권8호
    • /
    • pp.3665-3671
    • /
    • 2013
  • 본 연구는 중학생의 안전실천과 인지실패의 정도를 알아보고, 이 들이 안전사고에 미치는 영향을 알아보기 위한 것이다. 연구대상자는 총 292명이며 2012년 11월 5일부터 11월 25일까지 설문조사하여 자료를 수집하였다. 연구도구는 SPSS win17.0을 사용하였고, 평균과 표준편차, Paired t-test, 피어슨 상관계수를 이용하였다. 대상자의 안전실천과 인지실패는 부(-)의 상관을 나타냈으며 안전에 대한 실천정도가 높은 대상자가 사고인지 실패율이 낮았다. 또한 안전사고 경험이 적게 나타났다. 그와 반대로 안전에 대한 인지실패가 높은 대상자는 안전사고 경험이 높게 나타났다. 따라서 안전실천과 인지실패의 정도를 지속적으로 파악하여 안전사고 예방에 대한 방안을 마련하기 위한 연구가 필요하다. 또한 연구의 범위를 확대함으로써 학교현장에 다양한 안전사고 예방 교육프로그램을 적용하여 안전의식 함양과 안전실천의 일반화가 이루어져야 한다.

Failure characteristics and mechanical mechanism of study on red sandstone with combined defects

  • Chen, Bing;Xia, Zhiguo;Xu, Yadong;Liu, Shuai;Liu, Xingzong
    • Geomechanics and Engineering
    • /
    • 제24권2호
    • /
    • pp.179-191
    • /
    • 2021
  • In this study, the strength and failure mechanism of red sandstones with combined defects were investigated by uniaxial compression tests on red sandstones with different crack angles using two-dimensional particle flow code numerical software, and their mechanical parameters and failure process were studied and analyzed. The results showed that the mechanical characteristics such as peak strength, peak strain, and elastic modulus of the samples with prefabricated combined defects were significantly inferior than those of the intact samples. With increasing crack angle from 15° to 60°, the weakening area of cracks increased, elastic modulus, peak strength, and peak strain gradually reduced, the total number of cracks increased, and more strain energy was released. In addition, the samples underwent initial brittle failure to plastic failure stage, and the failure form was more significant, leading to peeling phenomenon. However, with increasing crack angle from 75° to 90°, the crack-hole combination shared the stress concentration at the tip of the crack-crack combination, resulted in a gradual increase in elastic modulus, peak strain and peak strength, but a decrease in the number of total cracks, the release of strain energy reduced, the plastic failure state weakened, and the spalling phenomenon slowed down. On this basis, the samples with 30° and 45° crack-crack combination were selected for further experimental investigation. Through comparative analysis between the experimental and simulation results, the failure strength and final failure mode with cracks propagation of samples were found to be relatively similar.

Mechanical behavior of rock-coal-rock specimens with different coal thicknesses

  • Guo, Wei-Yao;Tan, Yun-Liang;Yu, Feng-Hai;Zhao, Tong-Bin;Hu, Shan-Chao;Huang, Dong-Mei;Qin, Zhe
    • Geomechanics and Engineering
    • /
    • 제15권4호
    • /
    • pp.1017-1027
    • /
    • 2018
  • To explore the influence of coal thickness on the mechanical behavior and the failure characteristics of rock-coal-rock (RCR) mass, the experimental investigation of uniaxial compressive tests was conducted first and then a systematic numerical simulation by particle flow code (PFC2D) was performed to deeply analyze the failure mechanical behavior of RCR specimens with different coal thicknesses in conventional compression tests. The overall elastic modulus and peak stress of RCR specimens lie between the rock and the coal. Inter-particle properties were calibrated to match the physical sample strength and the stiffness response. Numerical simulation results show that the deformation and strength behaviors of RCR specimens depend not only on the coal thickness, but also on the confining pressure. Under low confining pressures, the overall failure mechanism of RCR specimen is the serious damage of coal section when the coal thickness is smaller than 30 mm, but it is shear failure of coal section when the coal thickness is larger than 30 mm. Whereas under high confining pressures, obvious shear bands exist in both the coal section and the rock section when the coal thickness is larger than 30 mm, but when the coal thickness is smaller than 30mm, the failure mechanism is serious damage of coal section and shear failure of rock section.

Spragging 에 의한 터빈 베어링의 손상 및 방지 대책 (Analysis for Prevention of Spragging in the Turbine Bearings)

  • 하현천;양승헌
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1999년도 제30회 추계학술대회
    • /
    • pp.174-178
    • /
    • 1999
  • This paper describes an investigation on bearing failure due to spragging that has been continuously occurred in turbine hearings. The spragging is defined as the damage found on the leading edge of unloaded pads in the tilting pad journal bearing, In general, the damage mechanism by spragging is classified into fatifgue failure, The principle cause of spragging could be thought as the self-excited vibration by the absence of a stable static equilibrium position of upper pads with no preload. Because of serious consequences of system breakdowns due to bearing failures, determination ar the causes of failure and effective method for countermeasures are very important. This paper describes both the causes of spragging and countermeasures for prevention of such failure, which are taken place in the electric power plants.

  • PDF

Prediction Methodology for Reliability of Semiconductor Packages

  • Kim, Jin-Young
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2002년도 International Symposium
    • /
    • pp.79-94
    • /
    • 2002
  • Root cause -Thermal expansion coefficient mismatch -Tape warpage -Initial die crack (die roughness) Guideline for failure prevention -Optimized tape/Substrate design for minimizing the warpage -Fine surface of die backside Root cause -Thermal expansion coefficient mismatch - Repetitive bending of a signal trace during TC cycle - Solder mask damage Guideline for failure prevention - Increase of trace width - Don't make signal trace passing the die edge - Proper material selection with thick substrate core Root cause -Thermal expansion coefficient mismatch -Creep deformation of solder joint(shear/normal) -Material degradation Guideline for failure Prevention -Increase of solder ball size -Proper selection of the PCB/Substrate thickness -Optimal design of the ball array -Solder mask opening type : NSMD -In some case, LGA type is better

  • PDF

토조실험 장치를 이용한 토사비탈면 표층거동 특성 연구 (A Study for Characterization on Shallow Behavior of Soil Slope by Flume Experiments)

  • 석재욱;박성용;나건하;강효섭
    • 지질공학
    • /
    • 제28권3호
    • /
    • pp.489-499
    • /
    • 2018
  • 본 연구에서는 급경사지 모형토조 실험을 통해 집중강우에 의한 표층거동 특성 및 체적함수비 변화 특성을 분석하였다. 화강암 풍화토를 대상으로 강우강도(100, 200 mm/hr) 및 초기 지반상태(VWC 7, 14, 26%) 조건에 대한 지표변위 및 체적함수비를 측정하고 영상분석을 위해 실험 전 과정을 비디오 카메라로 촬영하였다. 실험결과 표층붕괴는 후퇴성 붕괴, 전진형 붕괴, 국지적 붕괴의 세가지 형태가 주를 이루며, 후퇴성 붕괴와 전진형 붕괴의 경우 토사가 비탈면 하부까지 퇴적되는 특징으로 인해 상대적으로 큰 피해가 발생할 수 있는 것으로 나타났다. 체적함수비는 초기 조건에 관계없이 일정한 값에서 붕괴가 발생하였으며 건기 시의 지반 조건과 자연상태 조건에서는 체적함수비 증가양상을 통해 표층붕괴를 예측가능한 것으로 나타났다. 강우강도가 큰 경우에 전진형 붕괴가 우세하였으며, 일정 수준이상의 강우강도는 습윤전선 전이에 영향을 미치지 않은 것으로 나타났다.

Dynamic mechanism of rock mass sliding and identification of key blocks in multi-fracture rock mass

  • Jinhai Zhao;Qi Liu;Changbao Jiang;Zhang Shupeng;Zhu Weilong;Ma Hailong
    • Geomechanics and Engineering
    • /
    • 제32권4호
    • /
    • pp.375-385
    • /
    • 2023
  • There are many joint fissures distributed in the engineering rock mass. In the process of geological history, the underground rock mass undergoes strong geological processes, and undergoes complex geological processes such as fracture breeding, expansion, recementation, and re-expansion. In this paper, the damage-stick-slip process (DSSP), an analysis model used for rock mass failure slip, was established to examine the master control and time-dependent mechanical properties of the new and primary fractures of a multi-fractured rock mass under the action of stress loading. The experimental system for the recemented multi-fractured rock mass was developed to validate the above theory. First, a rock mass failure test was conducted. Then, the failure stress state was kept constant, and the fractured rock mass was grouted and cemented. A secondary loading was applied until the grouted mass reached the intended strength to investigate the bearing capacity of the recemented multi-fractured rock mass, and an acoustic emission (AE) system was used to monitor AE events and the update of damage energy. The results show that the initial fracture angle and direction had a significant effect on the re-failure process of the cement rock mass; Compared with the monitoring results of the acoustic emission (AE) measurements, the master control surface, key blocks and other control factors in the multi-fractured rock mass were obtained; The triangular shaped block in rock mass plays an important role in the stress and displacement change of multi-fracture rock mass and the long fissure and the fractures with close fracture tip are easier to activate, and the position where the longer fractures intersect with the smaller fractures is easier to generate new fractures. The results are of great significance to a multi-block structure, which affects the safety of underground coal mining.