• Title/Summary/Keyword: Failure Model

Search Result 4,562, Processing Time 0.034 seconds

Comparative Study on the Failure of Polymer/Roughened Metal Interfaces under Mode-I Loading II: Adhesion Model (인장하중하에서의 고분자/거친금속 계면의 파손에 대한 비교연구 II: 접착모델)

  • Lee Ho-Young;Kim Sung-Ryong
    • Korean Journal of Materials Research
    • /
    • v.15 no.1
    • /
    • pp.6-13
    • /
    • 2005
  • Copper based leadframe sheets were immersed in two kinds of hot alkaline solutions to form brown-oxide or blackoxide layer on the surface. The oxide-coated leadframe sheets were molded with epoxy molding compound (EMC). After post mold curing, the oxide-coated EMC-leadframe joints were machined to form sandwiched double-cantilever beam (SDCB) specimens. The SDCB specimens were used to measure the fracture toughness of the EMC/leadframe interfaces under quasi-Mode I loading conditions. After fracture toughness testing, the fracture surface were analyzed by various equipment to investigate failure path. An adhesion model was suggested to explain the failure path formation. The adhesion model is based on the strengthening mechanism of fiber-reinforced composite. The present paper deals with the introduction of the adhesion model. The explanation of the failure path with the proposed adhesion model was introduced in the companion paper.

An Application of Dirichlet Mixture Model for Failure Time Density Estimation to Components of Naval Combat System (디리슈레 혼합모형을 이용한 함정 전투체계 부품의 고장시간 분포 추정)

  • Lee, Jinwhan;Kim, Jung Hun;Jung, BongJoo;Kim, Kyeongtaek
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.4
    • /
    • pp.194-202
    • /
    • 2019
  • Reliability analysis of the components frequently starts with the data that manufacturer provides. If enough failure data are collected from the field operations, the reliability should be recomputed and updated on the basis of the field failure data. However, when the failure time record for a component contains only a few observations, all statistical methodologies are limited. In this case, where the failure records for multiple number of identical components are available, a valid alternative is combining all the data from each component into one data set with enough sample size and utilizing the useful information in the censored data. The ROK Navy has been operating multiple Patrol Killer Guided missiles (PKGs) for several years. The Korea Multi-Function Control Console (KMFCC) is one of key components in PKG combat system. The maintenance record for the KMFCC contains less than ten failure observations and a censored datum. This paper proposes a Bayesian approach with a Dirichlet mixture model to estimate failure time density for KMFCC. Trends test for each component record indicated that null hypothesis, that failure occurrence is renewal process, is not rejected. Since the KMFCCs have been functioning under different operating environment, the failure time distribution may be a composition of a number of unknown distributions, i.e. a mixture distribution, rather than a single distribution. The Dirichlet mixture model was coded as probabilistic programming in Python using PyMC3. Then Markov Chain Monte Carlo (MCMC) sampling technique employed in PyMC3 probabilistically estimated the parameters' posterior distribution through the Dirichlet mixture model. The simulation results revealed that the mixture models provide superior fits to the combined data set over single models.

Optimizing Concurrent Spare Parts Inventory Levels for Warships Under Dynamic Conditions

  • Moon, Seongmin;Lee, Jinho
    • Industrial Engineering and Management Systems
    • /
    • v.16 no.1
    • /
    • pp.52-63
    • /
    • 2017
  • The inventory level of concurrent spare parts (CSP) has a significant impact on the availability of a weapon system. A failure rate function might be of particular importance in deciding the CSP inventory level. We developed a CSP optimization model which provides a compromise between purchase costs and shortage costs on the basis of the Weibull and the exponential failure rate functions, assuming that a failure occurs according to the (non-) homogeneous Poisson process. Computational experiments using the data obtained from the Korean Navy identified that, throughout the initial provisioning period, the optimization model using the exponential failure rate tended to overestimate the optimal CSP level, leading to higher purchase costs than the one using the Weibull failure rate. A Pareto optimality was conducted to find an optimal combination of these two failure rate functions as input parameters to the model, and this provides a practical solution for logistics managers.

Risk Evaluation of Failure Cause for FMEA under a Weibull Time Delay Model (와이블 지연시간 모형 하에서의 FMEA를 위한 고장원인의 위험평가)

  • Kwon, Hyuck Moo;Lee, Min Koo;Hong, Sung Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.3
    • /
    • pp.83-91
    • /
    • 2018
  • This paper suggests a weibull time delay model to evaluate failure risks in FMEA(failure modes and effects analysis). Assuming three types of loss functions for delayed time in failure cause detection, the risk of each failure cause is evaluated as its occurring frequency and expected loss. Since the closed form solution of the risk metric cannot be obtained, a statistical computer software R program is used for numerical calculation. When the occurrence and detection times have a common shape parameter, though, some simple results of mathematical derivation are also available. As an enormous quantity of field data becomes available under recent progress of data acquisition system, the proposed risk metric will provide a more practical and reasonable tool for evaluating the risks of failure causes in FMEA.

$217Plus^{TM}$ 시스템 모형의 민감도

  • Jeon, Tae-Bo
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2011.06a
    • /
    • pp.257-264
    • /
    • 2011
  • In this study, we performed sensitivity study of the $217Plus^{TM}$ system model to various parameters. Specific attention was put to logistics model and its behavior has been examined in terms of non-component failure causes. We first briefly explained the $217Plus^{TM}$ methodology with system level failure rate evaluation. We then applied experimental designs with several failure causes as factors. We used an orthogonal array with three levels of each parameter. Our results indicate that cannot duplicate, induced, and wear-out causes have dominant effects on the system failures and design, parts, and system management have much less but a little strong effects. The results in this study not only figure out the behavior of the predicted failure rate as functions of failure causes but provide meaningful guidelines for practical applications.

  • PDF

Soil Failure Mode of a Buried Pipe Around in Soil Undergoing Lateral Movement (측방변형지반속 매설관 주변지반의 파괴모드)

  • Hong, Won-Pyo;Han, Jung-Geun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.5
    • /
    • pp.11-21
    • /
    • 2002
  • A series of model tests is performed to evaluate the relationship between soil and a buried pipe in soil undergoing lateral movement. As the result of the model tests, a wedge zone and plastic flow zones could be observed in front of the pipe. And also an arc failure of cylindrical cavity could be observed at both upper and lower zones. Failure shapes in both cohesionless and cohesive soils are nearly same, which was investigated failure angle of $45^{\circ}+{\phi}/2$. In the cohesionless soil, the higher relative density produces the larger arc of cylindrical cavity. On the basis of failure mode observed from model tests, the lateral earth pressure acting on a buried pipe in soil undergoing lateral movement could be applying the cylindrical cavity extension mode. The deformation behavior of soils was typically appeared in three divisions, which are elastic zones, plastic zones and pressure behavior zones.

A Study on the Prediction Model of Shear Strength of RC Beams Strengthened for Shear by FRP (섬유보강재로 전단보강된 RC보의 전단강도예측을 위한 해석모델에 대한 연구)

  • 심종성;오홍섭;유재명
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.5
    • /
    • pp.35-46
    • /
    • 2000
  • In this paper, an analytical model is proposed to predict the shear strenth of RC beams strengthened by FRP. This predictional model is composed of two basic models-the upper bound theorem for shear failure (shear tension or shear compression criteria) and a truss model based on the lower bound theorem for diagonal tension creteria. Also, a simple flexural theory based on USD is used to explain flexural failure. The major cause of destruction of RC beams shear strengthened by FRP does not lie in FRP fracture but in the loss of load capacity incurred by rip-off failure of shear strengthening material. Since interfacial shear stree between base concrete and the FRP is a major variable in rip-off failure mode, it is carefully analyzed to derive the shear strengthening effect of FRP. The ultimate shear strength and failure mode of RC beams, using different strengthening methods, estimated in this predictional model is then compared with the result derived from destruction experiment of RC beams shear strengthened using FRP. To verify the accuracy and consistency of the analysis, the estimated results using the predictional model are compared with various other experimental results and data from previous publications. The result of this comparative analysis showed that the estimates from the predictional model are in consistency with the experimental results. Therefore, the proposed shear strength predictional model is found to predict with relative accuracy the shear strength and failure mode of RC beams shear strengthened by FRP regardless of strengthening method variable.

Bayes Estimation for the Rayleigh Failure Model

  • Ko, Jeong-Hwan;Kang, Sang-Gil;Shin, Jae-Kyoung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.9 no.2
    • /
    • pp.227-235
    • /
    • 1998
  • In this paper, we consider a hierarchical Bayes estimation of the parameter, the reliability and hazard rate function based on type-II censored samples from a Rayleigh failure model. Bayes calculations can be implemented easily by means of the Gibbs sampler. A numerical study is provided.

  • PDF

Dam Failure and Unsteady Flow Analysis through Yeoncheon Dam Case(II) - Unsteady Flow Analysis of Downstream by Failure Scenarios - (연천댐 사례를 통한 댐 파괴 부정류해석 및 하류 영향 검토(II) -시나리오에 따른 댐 하류 부정류 해석 및 범랑특성 연구-)

  • Jang, Suk-Hwan
    • Journal of Environmental Science International
    • /
    • v.17 no.11
    • /
    • pp.1295-1305
    • /
    • 2008
  • This study aims at the analyze of unsteady downstream flow due to dam failure along dam failure scenario and applied to Yeoncheon Dam which was collapsed August 1st 1999, using HEC-RAS simulation model. The boundary conditions of this unsteady flow simulation are that dam failure arrival time could be at 02:45 a.m. August 1st 1999 and failure duration time could be also 30 minutes. Downstream 19.5 km from dam site was simulated for unsteady flow analysis in terms of dam failure and non-failure cases. For the parameter calibration, observed data of Jeonkok station were used and roughness coefficient was applied to simulation model. The result of the peak discharge difference was 2,696 to $1,745\;m^3/sec$ along the downstream between dam failure and non-failure and also peak elevation of water level showed meanly 0.6m difference. Those results of these studies show that dam failure scenarios for the unknown failure time and duration were rational because most results were coincident with observed records. And also those results and procedure could suggest how and when dam failure occurs and downstream unsteady flow analyzes.

Analysis of the Failure Mode in a Homogeneous Sandy Slope Using Model Test (모형실험을 이용한 균질한 사질토 사면의 붕괴형상 분석)

  • Song, Young-Suk;Park, Joon-Young;Kim, Kyeong-Su
    • The Journal of Engineering Geology
    • /
    • v.32 no.2
    • /
    • pp.209-219
    • /
    • 2022
  • To experimentally investigate the variation of soil characteristics in slope during rainfall and the shape of slope failure, the model test was performed using soil box and artificial rainfall simulator. The model test of slope formed by the homogenous sand was performed, and the saturation pattern in the model slope due to rainfall infiltration was observed. The slope model with the inclination of 35° was set up on the slope of 30°, and the rainfall intensity of 50 mm/hr was applied in the test. The soil depth of 35 cm was selected by considering the size of soil box, and the TDR (time domain reflectometry) sensors were installed at various depths to investigate the change of soil characteristics with time. As the result of model test, the slope model during rainfall was saturated from the soil surface to the subsurface, and from the toe part to the crest part due to rainfall infiltration. That is, the toe part of slope was firstly saturated by rainfall infiltration, and then due to continuous rainfall the saturation range was enlarged from the toe part to the crest part in the slope model. The failure of slope model was started at the toe part of slope and then enlarged to the crest part, which is called as the retrogressive failure. At the end of slope failure, the collapsed area increased rapidly. Also, the mode of slope failure was rotational. Meanwhile, the slope failure was occurred when the matric suction in the slope was reached to the air entry value (AEV) estimated in soil-water characteristic curve (SWCC).