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Bayes Estimation for the Rayleigh Failure Model

Jeong Hwan Ko ! - Sang Gil Kang 2 - Jae-Kyoung Shin °

Abstract

In this paper, we consider a hierarchical Bayes estimation of the parameter,
the reliability and hazard rate function based on type-II censored samples from
a Rayleigh failure model. Bayes calculations can be implemented easily by
means of the Gibbs sampler. A numerical study is provided.
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1. Introduction

The Rayleigh distribution is widely used in reliability analysis, applied statistics
and communication engineering. Siddiqui(1962) discussed the origin and proper-
ties of the Rayleigh distribution. Dyer and Whisenand(1973) mentioned the im-
portance of the Rayleigh distribution in communication engineering. Sinha and
Howlader(1983) obtained the Bayes estimator with respect to the Jeffreys’ non-
informative prior for the reliability under squared error loss function. They also
proposed the Bayes credible sets and the highest posterior density credible intervals
for reliability function. Howlader and Hossain(1995) derived the Bayes estimators
and highest posterior density intervals for the Rayleigh parameter and its reliability
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based on type II censored data, and Bayes predictive estimators and highest poste-
rior density prediction intervals for a future observation and also for the remaining
(n — r) failure times.

For Gibbs sampler approach, Dey and Lee(1992) considered Bayesian compu-
tation for the parameters and the reliability function of 2-parameter exponential
distribution, and also constrained parameter and truncated data problem in mul-
tivariate life distributions. Tiwari, Yang and Zalkikar(1996) considered Bayesian
estimation of the parameters and the reliability function based on type II censored
samples from a Pareto failure model.

This paper considers the Gibbs sampler approach for the hierarchical Bayes
analysis of the Rayleigh failure model under type-II censored data. In section 2,
we give the model and describe the computation methods for Bayes estimation. In
section 3, we implement the Rayleigh failure model with an illustration from the

simulated data.

2. Hierarchical Bayes Model and Gibbs Sampler

In problems such as life-testing, the ordered observations are a common occurrence.
In that case, time and cost can be saved by stopping the experiment after the
7 ordered observations have occurred, rather than waiting for all n failures. We
assume that the Rayleigh model represent the life time of all items. The Rayleigh
probability density function(pdf) with parameter o2 is given by '

2
f(lo?) = S exp(—5), © >0, 1)

A random sample of n items is drawn from the Rayleigh failure model (1) and is
put on life test. The observed sample consists of, for a preassigned r, the ordered
failure times, 1 < 22 < --- < z, and (n — r) survivors. The likelihood function of
the censored sample is

n!

f(Slo®) mﬁ exp(—5—3), (2)

where S = Y7_;2? + (n — r)z2. The reliability and hazard rate functions are,

respectively, given by

2
R{t) = exp(~5 ), 3)
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t
hit) = —. ‘4
( ) 0,2 \ )

The general hierarchical Bayes model is as follow:

L f(S|o?) « Znﬁ_'r)l(?%’)_r exp(—%;), where § = Y7_; 22 + (n — r)22.

II. 02!011,,31 ~ Inverted Gamma(ai, 31).
III. Marginally o; and (; are mutually independent with
f(a1) o exp(—2), where c is a known positive constant, and
B1 ~ Inverted Gamma (g, 32 ), where ag and B9 are known positive

constants.

In II, The inverted gamma density is given by

1

1 ,
f(o®|ay, B) = (o) B (oDt eXp(—E—(-ﬁ), o1 >0,6,>0. (5)

We denote the above distribution as o%|ay, 8) ~ IG(ay, 81). In III, we shall consider
several choices of ¢ while doing the data analysis in Section 3.

The Gibbs sampler is an iterative Monte Carlo integration method, developed
formally by Geman and Geman(1984) in the context of image restoration. In sta-
tistical framework Tanner and Wong(1987) used essentially this algorithm in their
substitution sampling approach. Gelfand and Smith(1990) developed the Gibbs
sampler for fairly general parametric settings.

In implementing Gibbs sampler, we follow the recommendation of Gelman and
Rubin (1992) and run m(> 2) parallel chains, each for 2d iterations with starting
points drawn from an overdispersed distribution. But to diminish the effects of the
starting distributions, the first d iterations of each chain are discarded. After d
iterations, all the subsequent iterates are retained for finding the desired posterior
distributions, posterior mean and variance, as well as for monitoring the convergence
of the Gibbs sampler. The convergence monitoring is discussed in detail in Section
3.

To implement the Gibbs sampler, we need to calculate the full conditional ds-

tributions. From the model, the joint posterior density of 02, a; and 3 is

f(0? 1, 41]8)
o f(S|o®) f(o®|a1, Br) f(cr) F(B1)
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S 1 1 a, 1 1 1

x exp[—

From (6), the full conditional distributions are given by

S 1 1

1
f(0®loa, 1, S) o expl——(5 + E)]W’

that is, G2la1,ﬂl’s ~ IG[al +7~, (g +[71_ —1]’
1
1,1 1 1

2 B [ — —_— —

f(,BllO’ ,Ot],S) X eXp[_,Bl(02 + 182)],6§m+a2+1)7

. 2 1 1.4

that is, Bi|o”, a1, S ~ IG[a1 + a, (; + ﬁ_) 1,
2

and
9 o 1 1
flai|o?, B1, 8) o exp( - )—~—~(ﬂ102)a1 NS

55'—2- - Bio? B Bo h c P(Oc) (0-2)a1+r+1 131111+012+1'

(6)

(9)

In implementing the Gibbs sampler, one should be able to draw samples from the

conditional densities given in (7)-(9). Simulation from the conditional densities (7)

and (8) which are both inverted gamma densities can be done by standard methods.

However, in order to simulate from the posterior density (9), one approach is to use

the adaptive rejection sampling algorithm of Gilks and Wild(1992). Fortunately, the

use of the adaptive rejection sampling algorithm of Gilks and Wild(1992) becomes

simple for us because of the following result of lemma.

Lemma f(a1l0?, 31, S) is a log-concave function of a;.

Proof. Consider

o1 1 1
floalo?, B, S) o exp(-_c_)mr(_al)_

then

log (e1lo, 41, 5) = a ~ anlog(B10%) ~ logT(e1) ~ =

(10)

(11)
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where a is the norming constant. Hence
dlogf(cy|e?, B, S) o 1 d (ay +1)
= I SO Gl S
Oay °9(br) c dallOg( o )
1 1 [Plogze ?z%1dz :
= - Hho—4 L 12
og(pro°) c + o fooo e—%2%dz (12)
Therefore
8%logf(c1lo?, By, S)
Oat
_ 1 [fo (logz)’e~*z%dz <f0°° logze‘zz"‘ldz)?]
- of IR fo© e72z0dz
= —% — Var(logz) < 0, since z ~ Gamma(1, oy + 1). (13)

1

So all required random variated generation is straightforward.

Using the Gibbs sampler, the posterior distribution of o2 given S is approximated
by

m  2d
F@?18) = (md)™' 3 > f(oPler = am, Br = Buwe, S)-
k=10=d+1

Also following Gelfand and Smith(1991), Rao-Blackwellized estimates of posterior

mean and variance of the o2 are given by

T R
H|8) = (md)” Z1z;r10z1u+r~1 2+ﬁ1kl) -
and
L 1 s, 1,
Var(c?|S) ~ (md)” 1;1%1:1 a1k1+r—1)2(a1k1+7"—2)(2+51kl)
. 1 S 1.
+ (md) kz:”%l (alkl+r—1)( ﬂlkl)
- a3 Y LS (15

i d+1041kz+7‘—1 G B
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3. A Numerical Example

In this Section, an illustrative example is represented by simulated data. In our
simulation data, we take n = 20, r = 10, 62 = 5.0 and generate the observations z;
from the Rayleigh failure model with o2. For hierarchical Bayesian analysis, using

Gibbs sampler, we need the marginal posterior densities which are as follows:

?las, B1, S~ IG[a1+r,(§+—1-)“1], (16)
b1
Bilo? a1, 8 ~ IG[a1+az,(Ui2+é)_l], (17)
2 (4 %] 1 1
f(a1|0,B1,S) X eXp(—?)mTal) (18)

We place vague second-stage prior on i , both having prior mean and prior
standard deviation equal to 100,000, that is, ap = 3 and B2 = 5 x 10~8.

To implement and monitor the convergence of the Gibbs sampler, we follow the
basic approach of Gelman and Rubin(1992). We consider 10 independent sequences
each with a sample of size 1,000, and with a burn-in sample of another 1,000.

To monitor the convergence of the Gibbs sampler for o2, the parameter of inter-
est, we follow Gelman and Rubin(1992). Compute B/1,000 = the variance between
the 10 sequence means &2 each based on 1,000 values. Also, let W denoted the

g
average of the 10 within-sequence variance. Then find
1,000 — 1 1 1

1,000 W+ 1,OOOB + 10 x 1,000B (19)

V=

Finally, find VR=V JW. If R is near 1 for the scalar estimands 52 of interest, then
this suggests that the desired convergence is achieved in the Gibbs sampler.

An inspection of table 1 reveals that the hierarchical Bayes procedure is not sen-
sitive to the choice of “c” as different choices of “c” can lead to almost same point
estimates of 2. So we use the ¢ = 100 and hence 6% = 5.5234. For censored and com-
plete observations, the figures 1, 2 and 3 are graphs of f(c2[S), f(h(t)[S'), f(R(t)lS’)
at a mission time ¢ = 2, respectively. From the Gibbs sampler, Rgt), e ,Rﬁ,t,) is a
sample from f(R(t)|S) and hgt), N hY is a sample from f(h(t)|S). The 90% credi-
ble intervals are (RE:)).osm)’ RE?))‘QSm)) and (hgg).osm)’ hgg).%m)). (0.05m) and (0.95m) are
the 0.05m® and 0.95m!" order statistics. For various mission time ¢, tables 2 and 3
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give the true values, the posterior means, the residuals and 90% credible intervals

for R(t) and h(t) on same censored data.

Table 1: Posterior Mean and Standard Deviation of o2
C 0.01 0.1 1 10 100

5° 5.5504 5.5378 5.5259 5.5259 5.5234
SD(c?) 1.9614 1.9548 1.9483 1.9482 1.9469

Table 2: Posterior Mean and 90% Credible Interval of R(t)
t R(t) R(t) R()-R(t) 90% Credible Interval

1.5 0.7985 0.8019 -0.0034 (0.6997,0.8847)
2.0 0.6703 0.6776 -0.0073 (0.5301,0.8043)
2.5 0.5353 0.5479 -0.0126 (0.3709,0.7116)
3.0 0.4066 0.4250 -0.0185 (0.2397,0.6126)
3.5 0.2938 0.3173 -0.0236 (0.1431,0.5133)
45 0.1320 0.1598 -0.0278 (0.0402,0.3320)

Table 3: Posterior Mean and 90% Credible Interval of h(t)

t h(t) h(t)  h(t) — h(t) 90% Credible Interval
1.5 0.3000 0.2975  0.0025 (0.1633,0.4761)
2.0 0.4000 0.3967  0.0033 (0.2178,0.6348)
2.5 0.5000 0.4958 0.0042 (0.2722,0.7934)
3.0 0.6000 0.5950  0.0050 (0.3267,0.9521)
(
(

3.5 0.7000 0.6942 0.0058 0.3811,1.1108)
4.5 0.9000 0.8925 0.0075 0.4900,1.4282)
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Figure 1: Estimated pdf of 02|S ; Dotted line - complete data, Solid line - censored

data

Figure 2: Estimated pdf of R(¢)|S ; Dotted line - complete data, Solid line - censored

data
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Figure 3: Estimated pdf of h(t)|S; Dotted line - complete data, Solid line - censored

data



