• Title/Summary/Keyword: Failure Load

Search Result 3,023, Processing Time 0.038 seconds

Criterion for judging seismic failure of suspen-domes based on strain energy density

  • Zhang, Ming;Parke, Gerry;Tian, Shixuan;Huang, Yanxia;Zhou, Guangchun
    • Earthquakes and Structures
    • /
    • v.15 no.2
    • /
    • pp.123-132
    • /
    • 2018
  • In this paper the strain energy density (SED) model is used to analyze the seismic behavior of suspen-domes and a new criterion is established for judging the seismic failure based on a characteristic point in the SED model. Firstly, a nonlinear time-history response analysis was carried out using the finite-element package ANSYS for typical suspen-domes subjected to different ground motions. The seismic responses including nodal displacements, ratios of yielding members, strain energy density and structural maximum deformation energy were extracted corresponding to the increasing peak ground acceleration (A). Secondly, the SED sum ($I_d$) was calculated which revealed that the $I_d-A$ curve exhibited a relatively large change (called a characteristic point) at a certain value of A with a very small load increment after the structures entered the elastic-plastic state. Thirdly, a SED criterion is proposed to judge the seismic failure load based on the characteristic point. Subsequently, the case study verifies the characteristic point and the proposed SED criterion. Finally, this paper describes the unity and application of the SED criterion. The SED method may open a new way for structural appraisal and the SED criterion might give a unified criterion for predicting the failure loads of various structures subjected to dynamic loads.

Tensile Strength of Post-Installed High-Shear Ring Anchors (HRA) After Shear Loading (전단 하중을 경험한 후설치 고전단 링앵커의 인장 강도)

  • Jeon, Sang Hyeon;Chun, Sung-Chul;Kim, Jae Yeol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.4
    • /
    • pp.61-68
    • /
    • 2018
  • Tensile load tests were conducted on High-Shear Ring Anchors (HRAs) after shear load had been applied to the HRAs, which had been developed to reduce the number of the anchors. Test variables include the embedment length of the rod and the width of the specimens and a total of 12 specimens were tested. Test results show that the HRAs pulled out due to bond failure or steel failure occurred in case that the HRAs were installed to the members with 300mm or greater width and the embedment length of 160mm (the actual embedment of rod is 140mm) or deeper. Except 4 HRAs showing steel failure of rod, the minimum and average of test-to-prediction by ACI 318-14 ratios are 1.18 and 1.79, respectively. The tensile strength of HRAs, after shear load was applied to the HRAs, can be safely evaluated by the minimum among the concrete breakout strength and bond strength with the actual embedment length of the rod.

Study on the Semi-Analytical Ice Load Calculation Methods for the Ice-Breaking Simulation (쇄빙시뮬레이션을 위한 반해석적 빙하중 계산법 고찰)

  • Kim, Jeong-Hwan;Jang, Beom-Seon;Kim, Yooil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.6
    • /
    • pp.353-364
    • /
    • 2020
  • This paper presents the semi-analytical ice load calculation methods that are useful to simulate the ice-breaking process. Since the semi-analytical methods rely on the previously developed closed form equations or numerical analysis results, the user's exact understanding for the equations must be supported in order to use the methods properly. In this study, various failure modes of ice such as local crushing, in-plane splitting failure, out-of-plane bending failure and radial or circumferential cracking with rotation of the broken ice floe are considered. Based on the presented methods, the fracture modes were evaluated according to the size and thickness of ice. In addition, time series analysis for the ice-breaking process was performed on several ice conditions and the results were analyzed.

An Evaluation of Failure Behavior of Pipe with Local Wall Thinning by Pipe Experiment (배관실험을 통한 국부감육 배관의 손상거동 평가)

  • Kim, Jin-Won;Park, Chi-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.731-738
    • /
    • 2002
  • To understand failure behavior of pipe thinned by flow accelerated corrosion, in this study, the pipe failure tests were performed on 102mm-Sch.80 carbon steel pipe with various local wall thinning shapes, and the failure mode, load carrying capacity, and deformability were investigated. The tests were conducted under loading conditions of 4-points bending and internal pressure. The experimental results showed that the failure mode of thinned pipe depended on magnitude of internal pressure and thinning length as well as loading direction and thinning depth and angle. The variation in load carrying capacity and deformability of thinned pipe with thinning length was determined by stress type appled to the thinning area and circumferential thinning angle. Also, the effect of internal pressure on failure behavior was dependent on failure mode of thinned pipe, and it promoted crack occurrence and mitigated local buckling at thinned area.

Properties of Hand-made Clay Balls used as a Novel Filter Media

  • Rajapakse, J.P.;Madabhushi, G.;Fenner, R.;Gallage, C.
    • Geomechanics and Engineering
    • /
    • v.4 no.4
    • /
    • pp.281-294
    • /
    • 2012
  • Filtration using granular media such as quarried sand, anthracite and granular activated carbon is a well-known technique used in both water and wastewater treatment. A relatively new pre-filtration method called pebble matrix filtration (PMF) technology has been proved effective in treating high turbidity water during heavy rain periods that occur in many parts of the world. Sand and pebbles are the principal filter media used in PMF laboratory and pilot field trials conducted in the UK, Papua New Guinea and Serbia. However during first full-scale trials at a water treatment plant in Sri Lanka in 2008, problems were encountered in sourcing the required uniform size and shape of pebbles due to cost, scarcity and Government regulations on pebble dredging. As an alternative to pebbles, hand-made clay pebbles (balls) were fired in a kiln and their performance evaluated for the sustainability of the PMF system. These clay balls within a filter bed are subjected to stresses due to self-weight and overburden, therefore, it is important that clay balls should be able to withstand these stresses in water saturated conditions. In this paper, experimentally determined physical properties including compression failure load (Uniaxial Compressive Strength) and tensile strength at failure (theoretical) of hand-made clay balls are described. Hand-made clay balls fired between the kiln temperatures of $875^{\circ}C$ to $960^{\circ}C$ gave failure loads of between 3.0 kN and 7.1 kN. In another test when clay balls were fired to $1250^{\circ}C$ the failure load was 35.0 kN compared to natural Scottish cobbles with an average failure load of 29.5 kN. The uniaxial compressive strength of clay balls obtained by experiment has been presented in terms of the tensile yield stress of clay balls. Based on the effective stress principle in soil mechanics, a method for the estimation of maximum theoretical load on clay balls used as filter media is proposed and compared with experimental failure loads.

Study on Behavior of Failure of Footing through Numerical Analysis (수치해석을 통한 기초지반의 파괴거동 고찰)

  • Lee, Seung-Hyun;Jang, In-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.2212-2218
    • /
    • 2015
  • In order to find out the load bearing behavior of sand and clay which sustain three types of shallow footing, finite element analyses were performed. Failure zone of sand which sustain strip footing was affected by relative density of sand whereas, failure zone of clay was not affected by soil strength and it was similar to the failure zone which is considered in theory. Considering the shape of load-settlement curves obtained by numerical analyses, punching shear failure can be seen in loose sand and ultimate bearing load can not be seen in dense sand whereas, yielding point can be seen in clay. Ultimate bearing loads for sand predicted by theory were greater than those obtained by numerical analyses and ultimate bearing loads for clay predicted by theory were similar to those of numerical analyses. Ultimate bearing loads determined by 1 inch settlement criteria were slightly less than those of numerical analyses.

Impact Buckling Reliability Analysis of Stiffened Cylinder With Initial Geometric Imperfection (기하학적 초기형상결함을 갖는 보강 원통의 충격좌굴 신뢰성 해석)

  • 김두기
    • Journal of KSNVE
    • /
    • v.6 no.6
    • /
    • pp.735-747
    • /
    • 1996
  • In this paper, buckling reliability analyses of stiffened cylinder with random initial geometric imperfection under axial impact load are performed by the combined response surface method. The effect of random geometric imperfection on the failure probability and reliability is recognized quantitatively. Buckling reliability decreases with the increase of mean value, cov of initial geometric imperfection under the same external load. Buckling probability under impact load is greater than those under static load with the same condition. From the probabilistic characteristics of imapct buckling load, relation between reliability index and safety parameter can be obtained in addition to the relation between load and reliability index. And those results can be used to determine the range of required safety parameter and acceptable imperfaction.

  • PDF

Decrease trends of ultimate loads of eccentrically loaded model strip footings close to a slope

  • Cure, Evrim;Sadoglu, Erol;Turker, Emel;Uzuner, Bayram Ali
    • Geomechanics and Engineering
    • /
    • v.6 no.5
    • /
    • pp.469-485
    • /
    • 2014
  • A series of bearing capacity tests was conducted with eccentrically loaded model surface and shallow strip footings resting close to a slope to investigate behavior of such footings (ultimate loads, failure surfaces, load-displacement curves, rotation of footing, etc.). Ultimate loads of footing close to slope decreased with increasing eccentricity for both surface and shallow footings. Failure surfaces were not symmetrical, primary failure surfaces occurred on the eccentricity side (the slope side) and secondary failure surfaces occurred on the other side. Lengths of failure surfaces decreased with increasing eccentricity. Footings always rotated towards eccentricity side a few degrees. For eccentrically loaded footing, decrease in ultimate load with increasing eccentricity is roughly in agreement with Customary Analysis.

Failure load prediction of mechanically fastened composite joint with the clamping force (클램핑 포스가 존재하는 복합재료 체결부의 파손강도 예측)

  • Ryu, Choong-O;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.18 no.5
    • /
    • pp.9-14
    • /
    • 2005
  • The design of composite joint is a very important research area because they are often the weakest areas in composite structures. In this paper, the failure load of the mechanically fastened composite joint with the clamping force was predicted by the failure area index method. By the suggested failure area index method, the strength of the mechanically fastened composite joint could be predicted within $22.5\%$ when the clamping force was applied to the composite joint.

An Experimental Study on the Hysteretic Capacity Evaluation of the Shear-Strengthened RC Column with Carbon Fiber Sheet (탄소섬유쉬트로 전단보강한 RC 기둥의 이력성능평가에 관한 실험적 연구)

  • 이현호;구은숙
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.750-755
    • /
    • 1999
  • When the RC frame structures subjected to the seismic load, brittle shear failure of vertical members induces brittle collapse of whole structures. Failure mechanism like this is not desirable. So shear strengthening method to avoid this failure mechanism is needed. Recently, strengthening method using continuous fiber sheet is studied and used widely which have high elastic and high strength characteristics. In this study, RC columns which is strengthened by carbon fiber sheet in the form of tape or whole sheet were tested under the cyclic load. The parameter of this test is the amount of strengthening. As the amount of strengthening increase, strength, ductility and energy capacity increase. The failure mode of test results are shear and bond-split failure.

  • PDF