• Title/Summary/Keyword: Failure Length

Search Result 1,079, Processing Time 0.026 seconds

Failure mechanism and bearing capacity of inclined skirted footings

  • Rajesh P. Shukla;Ravi S. Jakka
    • Geomechanics and Engineering
    • /
    • v.35 no.1
    • /
    • pp.41-54
    • /
    • 2023
  • The use of a skirt, a vertical projection attached to the footing, is a recently developed method to increase the bearing capacity of soils and reduce foundation settlements. Most of the studies were focused on vertical skirted circular footings resting on clay while neglecting the rigidity and inclination of skirts. This study employs finite element limit analysis to investigate the bearing capacity enhancement of flexible and rigid inclined skirts in cohesionless soils. The results indicate that the bearing capacity initially improves with an increase in the skirt inclination but subsequently decreases for both flexible and rigid skirts. However, the rigid skirt exhibits more apparent optimum skirt inclination and bearing capacity enhancement than the flexible one, owing to differences in their failure mechanisms. Furthermore, the bearing capacity of the inclined skirted foundation increases with the skirt length, footing depth, and internal friction angle of the soil. In the case of rigid skirts, the bearing capacity increases linearly with skirt length, while for flexible skirts, it reaches a stable value at a certain skirt length. The efficiency of the flexible footing reduces as the footing depth and soil internal friction angle increase. Conversely, the efficiency of the rigid skirt decreases only with an increase in the depth of the footing. The paper also presents a detailed analysis of various failure patterns, highlighting the behaviour of inclined skirted footings. Additionally, nonlinear regression equations are provided to quantify and predict the bearing capacity enhancement with the inclined skirts.

Evaluation of goodness of fit of semiparametric and parametric models in analysis of factors associated with length of stay in neonatal intensive care unit

  • Kheiry, Fatemeh;Kargarian-Marvasti, Sadegh;Afrashteh, Sima;Mohammadbeigi, Abolfazl;Daneshi, Nima;Naderi, Salma;Saadat, Seyed Hossein
    • Clinical and Experimental Pediatrics
    • /
    • v.63 no.9
    • /
    • pp.361-367
    • /
    • 2020
  • Background: Length of stay is a significant indicator of care effectiveness and hospital performance. Owing to the limited number of healthcare centers and facilities, it is important to optimize length of stay and associated factors. Purpose: The present study aimed to investigate factors associated with neonatal length of stay in the neonatal intensive care unit (NICU) using parametric and semiparametric models and compare model fitness according to Akaike information criterion (AIC) between 2016 and 2018. Methods: This retrospective cohort study reviewed 600 medical records of infants admitted to the NICU of Bandar Abbas Hospital. Samples were identified using census sampling. Factors associated with NICU length of stay were investigated based on semiparametric Cox model and 4 parametric models including Weibull, exponential, log-logistic, and log-normal to determine the best fitted model. The data analysis was conducted using R software. The significance level was set at 0.05. Results: The study findings suggest that breastfeeding, phototherapy, acute renal failure, presence of mechanical ventilation, and availability of central venous catheter were commonly identified as factors associated with NICU length of stay in all 5 models (P<0.05). Parametric models showed better fitness than the Cox model in this study. Conclusion: Breastfeeding and availability of central venous catheter had protective effects against length of stay, whereas phototherapy, acute renal failure, and mechanical ventilation increased length of stay in NICU. Therefore, the identification of factors associated with NICU length of stay can help establish effective interventions aimed at decreasing the length of stay among infants.

Development and application of a floor failure depth prediction system based on the WEKA platform

  • Lu, Yao;Bai, Liyang;Chen, Juntao;Tong, Weixin;Jiang, Zhe
    • Geomechanics and Engineering
    • /
    • v.23 no.1
    • /
    • pp.51-59
    • /
    • 2020
  • In this paper, the WEKA platform was used to mine and analyze measured data of floor failure depth and a prediction system of floor failure depth was developed with Java. Based on the standardization and discretization of 35-set measured data of floor failure depth in China, the grey correlation degree analysis on five factors affecting the floor failure depth was carried out. The correlation order from big to small is: mining depth, working face length, floor failure resistance, mining thickness, dip angle of coal seams. Naive Bayes model, neural network model and decision tree model were used for learning and training, and the accuracy of the confusion matrix, detailed accuracy and node error rate were analyzed. Finally, artificial neural network was concluded to be the optimal model. Based on Java language, a prediction system of floor failure depth was developed. With the easy operation in the system, the prediction from measured data and error analyses were performed for nine sets of data. The results show that the WEKA prediction formula has the smallest relative error and the best prediction effect. Besides, the applicability of WEKA prediction formula was analyzed. The results show that WEKA prediction has a better applicability under the coal seam mining depth of 110 m~550 m, dip angle of coal seams of 0°~15° and working face length of 30 m~135 m.

Stability Analysis of Road Embankment Reinforced by Geogrid (지오그리드로 보강된 도로제방 사면의 안정성 해석)

  • Lee, Han-Min;Yoo, Han-Kyu;Suh, Young-Chan;Park, Un-Sang
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.4
    • /
    • pp.39-50
    • /
    • 2001
  • In this study, in order to investigate the effects of reinforcement length and vertical spacing on the factor of safety, the road embankment reinforced by geogrid was analyzed using RSS(Reinforced Slope Stability) program based on limit equilibrium analysis. The result by computer analysis showed that the factor of safety for reinforced slope increased with increasing length of reinforcement and with decreasing vertical spacing of reinforcement up to certain limit. Also, numerical analysis by FLAC was performed on reinforced slope to evaluate the horizontal displacement, horizontal stress, and distribution of tensile forces of reinforcements in the cases of several reinforcement length. The results of analysis showed that the critical failure mode was toe failure or slope failure and the effect by the additional reinforcement length on the slope stability was negligible under stabilized condition.

  • PDF

Equation of the Development Length for the Pullout tests with GFRP Reinforcement having Splitting Failure (쪼갬파괴가 발생된 GFRP 보강근을 사용한 이음길이 산정식)

  • Ha, Sang-Su;Choi, Dong-Uk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.859-862
    • /
    • 2008
  • The objective of this study offer the equation of the development length for GFRP reinforcement. Pullout test carried out to propose the development length for GFRP reinforcement. Test variables included embedment length (L=15, 30 and 45d$_b$ ), pure cover thickness(C=0.5, 1.0, 1.5, and 2.0d$_b$ ), diameter of reforcement(D10, D13 and D16), and three types, (domestic : K2KR, K3KR, foreign : AsUS) of GFRP reinforcement. The method of test were introduced pure pullout and tests lasted until the GFRP reinforcements were reached final failure. Based on the results through the pullout test, the bond characteristics and average bond stress for GFRP reinforcement were investigated. The equation of development length was proposed based on the regression analysis selected specimens having splitting failure. The equation gained from this study compared with the design equation provided by ACI committee 440.1R-06. The results through this study are capable of the flexural member design with GFRP reinforcement having lab spliced.

  • PDF

Simulation of the effect of inclusions length and angle on the failure behavior of concrete structure under 3D compressive test: Experimental test and numerical simulation

  • Mohammad Saeed, Amini;Vahab, Sarfarazi;Kaveh, Asgari;Xiao, Wang;Mojtaba Moheb, Hoori
    • Steel and Composite Structures
    • /
    • v.46 no.1
    • /
    • pp.53-73
    • /
    • 2023
  • Man-made structure materials like concrete usually contain inclusions. These inclusions affect the mechanical properties of concrete. In this investigation, the influence of inclusion length and inclination angle on three-dimensional failure mechanism of concrete under uniaxial compression were performed using experimental test and numerical simulation. Approach of acoustic emission were jointly used to analyze the damage and fracture process. Besides, by combining the stress-strain behavior, quantitative determination of the thresholds of crack stress were done. concrete specimens with dimensions of 120 mm × 150 mm × 100 mm were provided. One and two holes filled by gypsum are incorporated in concrete samples. To build the inclusion, firstly cylinder steel tube was pre-inserting into the concrete and removing them after the initial hardening of the specimen. Secondly, the gypsum was poured into the holes. Tensile strengths of concrete and gypsum were 2.45 MPa and 1.5 MPa, respectively. The angle bertween inclusions and axial loadind ary from 0 to 90 with increases of 30. The length of inclusion vary from 25 mm to 100 mm with increases of 25 mm. Diameter of the hole was 20 mm. Entirely 20 various models were examined under uniaxial test. Simultaneous with experimental tests, numerical simulation (Particle flow code in two dimension) were carried out on the numerical models containing the inclusions. The numerical model were calibrated firstly by experimental outputs and then failure behavior of models containing inclusions have been investigated. The angle bertween inclusions and axial loadind vary from 0 to 90 with increases of 15. The length of inclusion vary from 25 mm to 100 mm with increases of 25 mm. Entirely 32 various models were examined under uniaxial test. Loading rate was 0.05 mm/sec. The results indicated that when inclusion has occupied 100% of sample thickness, two tensile cracks originated from boundaries of sample and spread parallel to the loading direction until being integrated together. When inclusion has occupied 75% of sample thickness, four tensile cracks originated from boundaries of sample and spread parallel to the loading direction until being integrated together. When inclusions have occupied 50% and 25% of sample thickness, four tensile cracks originated from boundaries of sample and spread parallel to the loading direction until being integrated together. Also the inclusion was failed by one tensile crack. The compressive strength of samples decease with the decreases of the inclusions length, and inclusion angle had some effects on that. Failure of concrete is mostly due to the tensile crack. The behavior of crack, was affected by the inclusion length and inclusion number.

Behavior of Concrete Confined with GFRP According to the Fiber Volume, Diameter and Length (복합소재 부재에서 섬유의 양과 시편의 크기에 따른 콘크리트 구속모델)

  • Lee, Myung;Lee, Sung-Woo;Choi, Seok-Hwan;Jung, Kyu-Sang;Lee, Young-Ki
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.471-478
    • /
    • 2004
  • The behavior of stocky concrete-filled glass fiber reinforced polymer(GFRP) tubes was studied experimentally and analytically The behavior is focused on the confining action of GRFP tube against concrete. In the experimental work, extensive tensile tests for GFRP tubes which have various fiber lay-out were conducted. And, also short length concrete filled GFRP tubes which have various tube thickness, diameter, and length were tested. In the analytical work, equations to describe the compressive stresses and strains at failure, as well as the entire stress-strain curve of the GFRP tubes were developed. A comparison between the experimental results and those of analytical results indicate that the proposed model provides satisfactory predictions for the compressive strengths, strains at failure, and stress-strain responses.

  • PDF

Study on the Undrained Strength Characteristics of Fiber Mixed Clay (섬유혼합 점토의 비배수 강도 특성에 대한 연구)

  • 박영곤;장병욱
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.382-387
    • /
    • 1998
  • Triaxial compression tests were run to study on the undrained strength characteristics of fiber mixed kaolin clay(Hadong). The influence of various test parameters such as amount and aspect ratio(ratio of length to diameter) of fiber, confining stress was also investigated. Test results showed that the increase in aspect ratio was increased in deviator stress at failure, but no effect on pore water pressure at failure. Deviator stress at failure was also increased at 0.5% mixing ratio(weight fraction of fiber to that of soil solid) of fiber but it was, thereafter, decreased and wits reached to constant after 2% mixing ratio. On the contrary, Pore water pressure at failure was increased as mixing ratio of fiber was greater than 1%. Deviator stress and pore water pressure of both clay and fiber mixed clay(FMC) at failure were increased as confining stress was increased. Deviator stress of FMC at failure was about 10% larger than that of clay, but pore water pressure of FMC at failure was almost similar to that of clay.

  • PDF

Analysis of Hydrograph by Dam Breach Shapes (댐 파괴형상에 따른 수문곡선 해석)

  • Park, Ki-Bum
    • Journal of Environmental Science International
    • /
    • v.16 no.4
    • /
    • pp.487-493
    • /
    • 2007
  • In this study is analysis which dams breach shapes are effect on peak discharge of dam-failure. The dam breach shapes and failure time are important peak discharge when dam failure. When dam failure times are 1hr, 2hr and 3hr condition for the ECRD and 0.1hr and 0.2hr for the CG and CFRD that breach shapes changed base length $B_b=1Hd,\;B_b=2Hd\;and\;B_b=3Hd$. As the results from DAMBRK(Dam Break model) peak discharge are increase base widths lengthen. As failure time is longer then peak discharge is decrease. So peak discharge is increase more short of dam failure time. Also peak discharge is increase become larger dam breach shapes.

An Experimental Study on the Strength of Composite-to-Aluminum Hybrid Single-Lap Joints (복합재-알루미늄 단일겹침 하이브리드 체결부 강도 특성 실험 연구)

  • Kim, Jung-Jin;Seong, Myeong-Su;Kim, Hong-Joo;Cha, Bong-Keun;Kweon, Jin-Hwe;Choi, Jin-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.9
    • /
    • pp.841-850
    • /
    • 2008
  • Strength and failure of composite-to-aluminum rivetted, bonded, and rivet/bonding hybrid single-lap joints were investigated by experiment. A total of 82 joint specimens were tested with 3 different overlap lengths and 2 types of stacking sequence. FM73m adhesive film and NAS9308-4-03 rivet were used for hybrid joints. While failure loads of the bonded and hybrid joints increased as the overlap length increased, failure loads of the rivetted joints were not affected by the overlap length. Effect of the stacking sequence was not remarkable in the simple bonded or rivetted joints. Failure loads of the hybrid joints, however, showed the maximum of 30% difference depending on the stacking sequence. Major failure mode of the bonded and hybrid joints was the delamination of the composite adherend and failure mode of riveted joints was the rivet failure with local bearing.