• Title/Summary/Keyword: Failure Length

Search Result 1,079, Processing Time 0.027 seconds

Analysis of Influencing Factors for Calculation of the Coulomb Earth Pressure of Cantilever Retaining Wall with a Short Heel (뒷굽 길이가 짧은 캔틸레버 옹벽의 Coulomb 토압 산정에 대한 영향 인자 분석)

  • Yoo, Kun-Sun
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.11
    • /
    • pp.59-72
    • /
    • 2017
  • In this study, the calculation method of the active earth pressure acting on the imaginary vertical plane at the end of the heel of the wall is proposed. For cantilever retaining wall, a change of shear zone behind the wall affects the earth pressure in the vertical plane at the end of heel of the wall depending on wall friction and angle of ground slope. It is very complicated to calculate the earth pressure by a limit equilibrium method (LEM) which considers angles of failure planes varying according to the heel length of the wall. So, the limit analysis method (LAM) is used for calculation of earth pressure in this study. Using the LAM, the earth pressures considering the actual slope angles of failure plane are calculated accurately, and then horizontal and vertical earth pressures are obtained from them respectively. This study results show that by decreasing the relative length of the heel, the slope angle of inward failure plane becomes larger than theoretical slope angle but the slope angle of outward failure plane does not change. And also the friction angle on the vertical plane at the end of the heel of the wall is between the ground slope angle and the wall friction angle, thereafter the active earth pressure decreases. Finally, the Coulomb earth pressure can be easily calculated from the relationship between friction angle (the ratio of vertical earth pressure to horizontal earth pressure) and relative length of the heel (the ratio of heel length to wall height).

Evaluation and Prediction of Failure Factors by Quantification Theory(II) on Banking Slopes in Forest Road (수량화(數量化)II류(類)에 의한 임도(林道) 성토사면(盛土斜面)의 붕괴요인(崩壞要人) 평가 (評價) 및 예측(豫測))

  • Cha, Du Song;Ji, Byoung Yun
    • Journal of Korean Society of Forest Science
    • /
    • v.88 no.2
    • /
    • pp.240-248
    • /
    • 1999
  • On the basis of data obtained from five forest roads collapsed due to a heavy rainfall of 1995 in Chunchon, Kangwon-do, this study was carried out to evaluate and predict the fill slope failure of forest roads with four factors of forest road structure and those of location condition by using Quantification theory(II). The results were summarized as follows ; In the structure factors of forest road, the fill slope failure was mainly occurred in longitudinal gradients less than $2^{\circ}$ or more than $4^{\circ}$, distance of surface-flow longer than 80m, fill slope length greater than 6m, and fill slope gradients steeper than $35^{\circ}$. In the factors of location condition, the failure was mainly occurred in ridge portion of road position, weathered rock and soft rock of constituent material, slope gradients in the range from $35^{\circ}$ to $45^{\circ}$, and concave and convex of longitudinal slope forms. The priority order for factors influencing on fill slope failure was ranked by fill slope length, constituent material, road position, and so on. And the rate of correct discrimination by analysis of fill slope failure was estimated at the high prediction of 86.5%.

  • PDF

Design and Strength Evaluation of an Anodically Bonded Pressurized Cavity Array for Wafer-Level MEMS Packaging (기판단위 밀봉 패키징을 위한 내압 동공열의 설계 및 강도 평가)

  • Gang, Tae-Gu;Jo, Yeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.1
    • /
    • pp.11-15
    • /
    • 2001
  • We present the design and strength evaluation of an anodically bonded pressurized cavity array, based on the energy release rate measured from the anodically bonded plates of two dissimilar materials. From a theoretical analysis, a simple fracture mechanics model of the pressurized cavity array has been developed. The energy release rate (ERR) of the bonded cavity with an infinite bonding length has been derived in terms of cavity pressure, cavity size, bonding length, plate size and material properties. The ERR with a finite bonding length has been evaluated from the finite element analysis performed for varying cavity and plate sizes. It is found that, for an inter-cavity bonding length greater than the half of the cavity length, the bonding strength of cavity array approaches to that of the infinite plate. For a shorter bonding length, however, the bonding strength of the cavity array is monotonically decreased with the ratio of the bonding length to the cavity length. The critical ERR of 6.21J/㎡ has been measured from anodically bonded silicon-glass plates. A set of critical pressure curves has been generated for varying cavity array sizes, and a design method of the pressurized cavity array has been developed for the failure-free wafer-level packaging of MEMS devices.

Risk factors for orthodontic fixed retention failure: A retrospective controlled study

  • Kaat Verschueren;Amit Arvind Rajbhoj;Giacomo Begnoni;Guy Willems;Anna Verdonck;Maria Cadenas de Llano-Perula
    • The korean journal of orthodontics
    • /
    • v.53 no.6
    • /
    • pp.365-373
    • /
    • 2023
  • Objective: To investigate the potential correlation between fixed orthodontic retention failure and several patient- and treatment-related factors. Methods: Patients finishing treatment with fixed appliances between 2016 and 2017 were retrospectively included in this study. Those not showing fixed retention failure were considered as control group. Patients with fixed retention failure were considered as the experimental group. Additionally, patients with failure of fixed retainers in the period of June 2019 to March 2021 were prospectively identified and included in the experimental group. The location of the first retention failure, sex, pretreatment dental occlusion, facial characteristics, posttreatment dental occlusion, treatment approach and presence of oral habits were compared between groups before and after treatment separately by using a Fisher exact test and a Mann-Whitney U test. Results: 206 patients with fixed retention failure were included, 169 in the mandibular and 74 in the maxillary jaws. Significant correlations were observed between retention failure in the mandibular jaws and mandibular arch length discrepancy (P = 0.010), post-treatment growth pattern (P = 0.041), nail biting (P < 0.001) and abnormal tongue function (P = 0.002). Retention failure in the maxillary jaws was more frequent in patients with IPR in the mandibular jaws (P = 0.005) and abnormal tongue function (P = 0.021). Conclusions: This study suggests a correlation between fixed retention failure and parafunctional habits, such as nail biting and abnormal tongue function. Prospective studies with larger study populations could further confirm these results.

Flexural Behavior of Damaged RC Beams Repaired with Epoxy Mortar System (에폭시 모르터로 보수한 손상을 입은 RC 보의 휨 거동)

  • 조하나;신영수;홍건호;정혜교
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.762-767
    • /
    • 1999
  • This paper presents an experimental study on flexural behavior of damaged RC beams repaired with epoxy mortar system. The main test variables are repair length and depth. A series of 7 specimens was tested to show the corresponding effect of each variables on maximum load capacity, load-deflection relationship, and failure mode. The results of this study shows that flexural behavior of repaired RC beams changes as the repair length and depth is getting longer and deeper, so that the tension strength of repairing materials should be considered in the courses of repair design.

  • PDF

Interfacial mechanical behaviors of RC beams strengthened with FRP

  • Deng, Jiangdong;Liu, Airong;Huang, Peiyan;Zheng, Xiaohong
    • Structural Engineering and Mechanics
    • /
    • v.58 no.3
    • /
    • pp.577-596
    • /
    • 2016
  • FRP-concrete interfacial mechanical properties determine the strengthening effect of RC beams strengthened with FRP. In this paper, the model experiments were carried out with eight specimens to study the failure modes and the strengthening effect of RC beams strengthened with FRP. Then a theoretical model based on interfacial performances was proposed and interfacial mechanical behaviors were studied. Finite element analysis confirmed the theoretical results. The results showed that RC beams strengthened with FRP had three loading stages and that the FRP strengthening effects were mainly exerted in the Stage III after the yielding of steel bars, including the improvement of the bearing capacity, the decreased ultimate deformation due to the sudden failure of FRP and the improvement of stiffness in this stage. The mechanical formulae of the interfacial shear stress and FRP stress were established and the key influence factors included FRP length, interfacial bond-slip parameter, FRP thickness, etc. According to the theoretical analysis and experimental data, the calculation methods of interfacial shear stress at FRP end and FRP strain at midspan were proposed. When FRP bonding length was shorter, interfacial shear stress at FRP end was larger that led to concrete cover peeling failure. When FRP was longer, FRP reached the ultimate strain and the fracture failure of FRP occurred. The theoretical results were well consistent with the experimental data.

Critical Failure Condition of Reinforced Earth Wall by Photograph (사진촬영을 통한 보강토옹벽의 파괴조건 연구)

  • Ju, Jae-Woo;Kim, Seong-Tae;Kim, Jae-Young;Chang, Yong-Chai;Cho, Sam-Deok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.380-387
    • /
    • 2004
  • Recently the geosynthetics reinforced retaining wall has been widely used instead of the steel reinforced retaining wall. The geosynthetics reinforced retaining wall is a very dangerous structure if the geosynthetics lose their strength about tension or if it lose their pullout resistence, but it was known that the geosynthetics reinforced wall had a great resistence and was a very safe structure against a earthquake or a dynamic load. It can be said that most important factors in the stability of the geosynthetics reinforced wall are the horizontal length of reinforcement and the vertical distance between two reinforcements. That is to say, as the length of reinforcement is longer, the structure is more stable and as the vertical distance between two reinforcements is shorter, it is more stable. In this study, in order to get the critical condition with a safety rate of 1, various kinds of model tests about geosynthetics reinforced wall has been performed. Photos by B-shutter method has been taken during tests and from photos, which show us the failure state, the critical condition about failure has been conformed. Accordingly the equation, which says the limit of stability in geosynthetics reinforced wall., has been proposed.

  • PDF

Numerical Analysis of River Bed Change Due to Reservoir Failure Using CCHE1D Model (CCHE1D 모형을 이용한 저수지 붕괴에 따른 하상변동 해석)

  • Son, In Ho;Kim, Byunghyun;Son, Ah Long;Han, Kun Yeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.2
    • /
    • pp.219-229
    • /
    • 2016
  • This study presents the analysis of flood and bed deformation caused by reservoir failure. The CCHE1D is used to simulate 1D non-uniform, non-equilibrium sediment transport and bed deformation. The CCHE1D deals with the adaptation length for non-equilibrium sediment, classified sediment particle for non-uniform sediment and mixing layer for the exchange with the sediment moving with the flow. The model is applied to Ha!Ha! river basin where was experienced reservoir failure in 1996 to analyze non-uniform and non-equilibrium sediment transport. The calculations are compared with morphological bed changes of pre- and post-flood. In addition, model sensitivity to main parameters involving adaptation length ($L_{s,b}$), non-equilibrium coefficient (${\alpha}_s$), mixing layer thickness (${\delta}_m$) and porosity (p') is analyzed. The results indicates that thalweg change is the most sensitive to non-equilibrium coefficient (${\alpha}_s$) among those parameters in the study area.

Numerical analysis on dynamic response and damage assessment of FRP bars reinforced-UHPC composite beams under impact loading

  • Tao Liu;Qi M. Zhu;Rong Ge;Lin Chen;Seongwon Hong
    • Computers and Concrete
    • /
    • v.34 no.4
    • /
    • pp.409-425
    • /
    • 2024
  • This paper utilizes LS-DYNA software to numerically investigate impact response and damage evaluation of fiber-reinforced polymer (FRP) bars-reinforced ultra-high-performance concrete (UHPC) composite beams (FRP-UHPC beams). Three-dimensional finite element (FE) models are established and calibrated by using literature-based static and impact tests, demonstrating high accuracy in simulating FRP-UHPC beams under impact loading. Parametric analyses explore the effects of impact mass, impactor height, FRP bar type and diameter, and clear span length on dynamic response and damage modes. Two failure modes emerge: tensile failure with bottom longitudinal reinforcement fracture and compression failure with local concrete compression near the impact region. Impact mass or height variation under the same impact energy significantly affects the first peak impact force, but minimally influences peak midspan displacement with a difference of no more than 5% and damage patterns. Increasing static flexural load-carrying capacity enhances FRP-UHPC beam impact resistance, reducing displacement deformation by up to 30%. Despite similar static load-carrying capacities, different FRP bars result in varied impact resistance. The paper proposes a damage assessment index based on impact energy, static load-carrying capacity, and clear span length, correlating well with beam end rotation. Their linearly-fitting coefficient was 1.285, 1.512, and 1.709 for the cases with CFRP, GFRP, and BFRP bars, respectively. This index establishes a foundation for an impact-resistant design method, including a simplified formula for peak midspan displacement assessment.

Effective Bond Length of FRP Sheets Externally Bonded to Concrete

  • Ben Ouezdou, Mongi;Belarbi, Abdeldjelil;Bae, Sang-Wook
    • International Journal of Concrete Structures and Materials
    • /
    • v.3 no.2
    • /
    • pp.127-131
    • /
    • 2009
  • Strengthening and repair of concrete structures using externally bonded fiber reinforced polymer (FRP) composite sheets has been popular around the world during the last two decades. However, premature failure due to debonding of the FRP is one of the important issues still to be resolved. Numerous research studies have dealt with the debonding problem in terms of Effective Bond Length (EBL), however, determination of this length has not yet been completely assessed. This paper summarizes previous works on the EBL and proposes a new relationship of the EBL with the FRP stiffness based on the existing experimental data collected in this study.