• 제목/요약/키워드: Failure Analysis and Modeling

검색결과 429건 처리시간 0.026초

ANALYZING THE DURATION OF SUCCESS AND FAILURE IN MARKOV-MODULATED BERNOULLI PROCESSES

  • Yoora Kim
    • 대한수학회지
    • /
    • 제61권4호
    • /
    • pp.693-711
    • /
    • 2024
  • A Markov-modulated Bernoulli process is a generalization of a Bernoulli process in which the success probability evolves over time according to a Markov chain. It has been widely applied in various disciplines for modeling and analysis of systems in random environments. This paper focuses on providing analytical characterizations of the Markovmodulated Bernoulli process by introducing key metrics, including success period, failure period, and cycle. We derive expressions for the distributions and the moments of these metrics in terms of the model parameters.

A Bayesian network based framework to evaluate reliability in wind turbines

  • Ashrafi, Maryam;Davoudpour, Hamid;Khodakarami, Vahid
    • Wind and Structures
    • /
    • 제22권5호
    • /
    • pp.543-553
    • /
    • 2016
  • The growing complexity of modern technological systems requires more flexible and powerful reliability analysis tools. Existing tools encounter a number of limitations including lack of modeling power to address components interactions for complex systems and lack of flexibility in handling component failure distribution. We propose a reliability modeling framework based on the Bayesian network (BN). It can combine historical data with expert judgment to treat data scarcity. The proposed methodology is applied to wind turbines reliability analysis. The observed result shows that a BN based reliability modeling is a powerful potential solution to modeling and analyzing various kinds of system components behaviors and interactions. Moreover, BN provides performing several inference approaches such as smoothing, filtering, what-if analysis, and sensitivity analysis for considering system.

대심도 암반특성의 모델링 및 해석에 대한 고찰 (A Study on Modeling and Analysis of Rock Characteristics at Depth)

  • 조남각;신성호;정용진;송한찬
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.591-604
    • /
    • 2009
  • This paper presents some important issues in modeling rock behaviour around an underground opening at depth which characterized as stress-induced fractural failure of rock. Unlike other conventional modeling approaches, stress-induced rock failure is highly complex process due to its own heterogeneous and discrete natures. Because of this complexity, many researchers has been struggled to mimic such processes as close as possible to reality with various approaches in both analytical, and numerical approaches for past few decades. Such approaches which are based on continuum mechanics, analytical fracture mechanics, and DEM(Discrete Element Method) were explored in this paper, and fundamental shortcomings for each approaches were illustrated here. In addition, DEM approach using $PFC^{2D}$(Particle Flow Code) was also implemented and illuminated in this paper and discuss the improvement and considerations for the future research.

  • PDF

Failure analysis of prestressed concrete containment vessels under internal pressure considering thermomechanical coupling

  • Yu-Xiao Wu;Zi-Jian Fei;De-Cheng Feng;Meng-Yan Song
    • Nuclear Engineering and Technology
    • /
    • 제55권12호
    • /
    • pp.4504-4517
    • /
    • 2023
  • After a loss of coolant accident (LOCA) in the prestressed concrete containment vessels (PCCVs) of nuclear power plants, the coupling of temperature and pressure can significantly affect the mechanical properties of the PCCVs. However, there is no consensus on how this coupling affects the failure mechanism of PCCVs. In this paper, a simplified finite element modeling method is proposed to study the effect of temperature and pressure coupling on PCCVs. The experiment results of a 1:4 scale PCCV model tested at Sandia National Laboratory (SNL) are compared with the results obtained from the proposed modeling approach. Seven working conditions are set up by varying the internal and external temperatures to investigate the failure mechanism of the PCCV model under the coupling effect of temperature and pressure. The results of this paper demonstrate that the finite element model established by the simplified finite element method proposed in this paper is highly consistent with the experimental results. Furthermore, the stress-displacement curve of the PCCV during loading can be divided into four stages, each of which corresponds to the damage to the concrete, steel liner, steel rebar, and prestressing tendon. Finally, the failure mechanism of the PCCV is significantly affected by temperature.

Performance of bridge structures under heavy goods vehicle impact

  • Zhao, Wuchao;Qian, Jiang;Wang, Juan
    • Computers and Concrete
    • /
    • 제22권6호
    • /
    • pp.515-525
    • /
    • 2018
  • This paper presents a numerical study on the performance of reinforced concrete (RC) bridge structures subjected to heavy goods vehicle (HGV) collision. The objectives of this study are to investigate the dynamic response and failure modes of different types of bridges under impact loading as well as to give an insight into the simplified methods for modeling bridge structures. For this purpose, detailed finite-element models of HGV and bridges are established and verified against the full-scale collision experiment and a recent traffic accident. An intensive parametric study with the consideration of vehicle weight, vehicle velocity, structural type, simplified methods for modeling bridges is conducted; then the failure mode, impact force, deformation and internal force distribution of the validated bridge models are discussed. It is observed that the structural type has a significant effect on the force-transferring mechanism, failure mode and dynamic response of bridge structures, thus it should be considered in the anti-impact design of bridge structures. The impact force of HGV is mainly determined by the impact weight, impact velocity and contact interface, rather than the simplification of the superstructure. Furthermore, to reduce the modeling and computing cost, it is suggested to utilize the simplified bridge model considering the inertial effect of the superstructure to evaluate the structural impact behavior within a reasonable precision range.

절리암반사면의 안정해석 방법에 관한 비교연구 (A Comarative study on slope stability modeling of highly fractured rock slopes)

  • 유충식;김선빈;양기호;정하승
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.434-443
    • /
    • 2009
  • Slope stability analysis is an essential part of rock slope design. For highly fractured rock, the limit equilibrium method (LEM) based slope stability analysis with a circular failure surface is often carried out assuming the rock mass behaves more or less as a continuum. This paper examines first, the applicability of the finite-element method (FEM) based shear strength reduction (SSR) technique for highly fractured rock slope, and second the use of Mohr-Coulomb (MC) failure criterion in conjunction with generalized Hoek-Brown (HB) failure criterion. The numerical results on a number of cases are compared in terms of the factor of safety (FS). The results indicated that the FEM-based SSR technique yields almost the same FSs from LEM, and that the MC and HB failure criteria yield almost identical FSs when the strength parameters for MC failure criterion are obtained based on the modified HB failure criterion if and only if value of the Hoek-Brown constant $m_i$ is smaller than 10 and slope angle is smaller than 1:1, otherwise MC failure criteria over-estimate the factor of safety.

  • PDF

Different macroscopic models for slender and squat reinforced concrete walls subjected to cyclic loads

  • Shin, Jiuk;Kim, JunHee
    • Earthquakes and Structures
    • /
    • 제7권5호
    • /
    • pp.877-890
    • /
    • 2014
  • The purpose of this study is to present adequate modeling solutions for squat and slender RC walls. ASCE41-13 (American Society of Civil Engineers) specifies that the aspect ratios of height to width for the RC walls affect the hysteresis response. Thus, this study performed non-linear analysis subjected to cyclic loading using two different macroscopic models: one of macroscopic models represents flexural failure of RC walls (Shear Wall Element model) and the other (General Wall Element model) reflects diagonal shear failure occurring in the web of RC walls. These analytical results were compared to previous experimental studies for a slender wall (> aspect ratio of 3.0) and a squat wall (= aspect ratio of 1.0). For the slender wall, the difference between the two macroscopic models was negligible, but the squat wall was significantly affected by parameters for shear behavior in the modeling method. For accurate performance evaluation of RC buildings with squat walls, it would be reasonable to use macroscopic models that give consideration to diagonal shear.

Direct fault-tree modeling of human failure event dependency in probabilistic safety assessment

  • Ji Suk Kim;Sang Hoon Han;Man Cheol Kim
    • Nuclear Engineering and Technology
    • /
    • 제55권1호
    • /
    • pp.119-130
    • /
    • 2023
  • Among the various elements of probabilistic safety assessment (PSA), human failure events (HFEs) and their dependencies are major contributors to the quantification of risk of a nuclear power plant. Currently, the dependency among HFEs is reflected using a post-processing method in PSA, wherein several drawbacks, such as limited propagation of minimal cutsets through the fault tree and improper truncation of minimal cutsets exist. In this paper, we propose a method to model the HFE dependency directly in a fault tree using the if-then-else logic. The proposed method proved to be equivalent to the conventional post-processing method while addressing the drawbacks of the latter. We also developed a software tool to facilitate the implementation of the proposed method considering the need for modeling the dependency between multiple HFEs. We applied the proposed method to a specific case to demonstrate the drawbacks of the conventional post-processing method and the advantages of the proposed method. When applied appropriately under specific conditions, the direct fault-tree modeling of HFE dependency enhances the accuracy of the risk quantification and facilitates the analysis of minimal cutsets.

Multiscale modeling for compressive strength of concrete columns with circular cross-section

  • Wu, Han-liang;Wang, Yuan-feng
    • Computers and Concrete
    • /
    • 제15권6호
    • /
    • pp.865-878
    • /
    • 2015
  • In order to construct a multiscale model for the compressive strength of plain concrete columns with circular cross section subjected to central longitudinal compressive load, a column failure mechanism is proposed based on the theory of internal instability. Based on an energy analysis, the multiscale model is developed to describe the failure process and predict the column's compressive strength. Comparisons of the predicted results with experimental data show that the proposed multiscale model can accurately represent both the compressive strength of the concrete columns with circular cross section, and the effect of column size on its strength.

Simplified Failure Mechanism for the Prediction of Tunnel Crown and Excavation Front Displacements

  • Moghaddam, Rozbeh B.;Kim, Mintae
    • 자연, 터널 그리고 지하공간
    • /
    • 제21권1호
    • /
    • pp.101-112
    • /
    • 2019
  • This case study presented a simplified failure mechanism approach used as a preliminary deformation prediction for the Mexico City's metro system expansion. Because of the Mexico City's difficult subsoils, Line 12 project was considered one of the most challenging projects in Mexico. Mexico City's subsurface conditions can be described as a multilayered stratigraphy changing from soft high plastic clays to dense to very dense cemented sands. The Line 12 trajectory crossed all three main geotechnical Zones in Mexico City. Starting from to west of the City, Line 12 was projected to pass through very dense cemented sands corresponding to the Foothills zone changing to the Transition zone and finalizing in the Lake zone. Due to the change in the subsurface conditions, different constructions methods were implemented including the use of TBM (Tunnel Boring Machine), the NATM (New Austrian Tunneling Method), and cut-and-cover using braced Diaphragm walls for the underground section of the project. Preliminary crown and excavation front deformations were determined using a simplified failure mechanism prior to performing finite element modeling and analysis. Results showed corresponding deformations for the crown and the excavation front to be 3.5cm (1.4in) and 6cm (2.4in), respectively. Considering the complexity of Mexico City's difficult subsoil formation, construction method selection becomes a challenge to overcome. The use of a preliminary results in order to have a notion of possible deformations prior to advanced modeling and analysis could be beneficial and helpful to select possible construction procedures.