• Title/Summary/Keyword: Failure, Reliability Analysis

Search Result 1,462, Processing Time 0.03 seconds

Reliability analysis by numerical quadrature and maximum entropy method

  • Zhu, Tulong
    • Structural Engineering and Mechanics
    • /
    • v.3 no.2
    • /
    • pp.135-144
    • /
    • 1995
  • Since structural systems may fail in any one of several failure modes, computation of system reliability is always difficult. A method using numerical quadrature for computing structural system reliability with either one or more than one failure mode is presented in this paper. Statistically correlated safety margin equations are transformed into a group of uncorrelated variables and the joint density function of these uncorrelated variables can be generated by using the Maximum Entropy Method. Structural system reliability is then obtained by integrating the joint density function with the transformed safety domain enclosed within a set of linear equations. The Gaussian numerical integration method is introduced in order to improve computational accuracy. This method can be used to evaluate structural system reliability for Gaussian or non-Gaussian variables with either linear or nonlinear safety boundaries. It is also valid for implicit safety margins such as computer programs. Both the theory and the examples show that this method is simple in concept and easy to implement.

Field Data Collection and Failure Analysis for Durability Improvement (내구수명향상을 위한 서비스 데이터 수집 및 고장률 분석)

  • Kim, Jong-Hwan;Jung, Won
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.16 no.5
    • /
    • pp.107-114
    • /
    • 2011
  • The purpose of this paper is to develop a reliability estimation process of agricultural machinery components using field failure data. Estimating the durability is a time-consuming in the product development process. Using the field data of tractor, failures for major parts are investigated and databases are developed. Accelerated life test using the stress analysis could improve Weibull B10 considerably. This estimation process is useful for preparing the design input and planning the durability target.

FMEA for Interaction Failures (상호작용기반 FMEA 실행)

  • Lee, D.J.;Jang, J.S.
    • Journal of Applied Reliability
    • /
    • v.17 no.1
    • /
    • pp.28-37
    • /
    • 2017
  • Purpose: This paper proposes a procedure that may infer and identify interaction failures in a module. Methods: In design FMEA, we defined an interaction model between components and proposed a method for selecting a single component by using the standard specification classification table and four methods for choosing the related components. We also introduced the function tree for function and requirement characteristic analysis and proposed utilization of standard stress lists and 1st and 2nd stress analysis tables to determine the effect the stress analysis has on interactions. Finally, the interaction mechanism diagram was proposed and used to infer the failure mechanism. Process FMEA also established procedures in a similar way. Results: We established a procedure for predicting the failure mode due to interaction between components based on Company A's multi-step FMEA procedure. Conclusion: By applying the proposed interaction FMEA procedure to the development model, we were able to confirm the effect of the new derivation on the failure mode of interaction, which was not predicted by the existing FMEA.

A STUDY OF FAILURE MODE, EFFECTS AND CRITICALITY ANALYSIS PROCESS FOR THE RAILROAD SYSTEM

  • Kim, Jae-Hoon;Jeong, Hyun-Yong;Cha, Dong-Wook;Park, Kwon-Shik;Park, Jun-Seo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1394-1400
    • /
    • 2008
  • This study investigates the Failure Modes, Effects and Criticality Analysis (FMECA) Method for the railroad vehicle. Recently, RAMS (Reliability, Availability, Maintainability and Safety) is one of the most important issues in the railroad industry. FMECA is prerequisite for the RAMS Analysis, and it is a procedure to identify the potential failure modes and their effects and to reduce or mitigate the critical effects on the system. FMECA is used in various industries and it is specialized in each industry. For instance, MIL-1629a and SAE-J1739 are specialized FMECA method for Military industry and Automotive industry, respectively. Although the railroad industry requires the high reliability system, it does not have a specialized FMECA yet. Thus, in this paper, an FMECA method specialized to the railroad vehicle was proposed through analyses and comparison of the MIL-1629a, SAE-J1739 and IEC-60812 standards.

  • PDF

An Approach for the NHPP Software Reliability Model Using Erlang Distribution (어랑 분포를 이용한 NHPP 소프트웨어 신뢰성장 모형에 관한 연구)

  • Kim Hee-Cheul;Choi Yue-Soon;Park Jong-Goo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.1
    • /
    • pp.7-14
    • /
    • 2006
  • The finite failure NHPP models proposed in the literature exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rates per fault. In this paper, we propose the Erlang reliability model, which can capture the increasing nature of the failure occurrence rate per fault. Equations to estimate the parameters of the Erlang finite failure NHPP model based on failure data collected in the form of inter-failure times are developed. For the sake of proposing shape parameter of the Erlang distribution, we used to the goodness-of-fit test of distribution. Data set, where the underlying failure process could not be adequately described by the existing models, which motivated the development of the Erlang model. Analysis of the failure data set which led us to the Erlang model, using arithmetic and Laplace trend tests, goodness-of-fit test, bias tests is presented.

Reliability Assessment Criteria of Module for the LED traffic signal (LED 교통신호등용 모듈의 신뢰성평가기준)

  • Kim, Jin-Sheon;Park, Chang-Kyu;Kim, Dae-Kyung;Jeong, Hai-Sung
    • Journal of Applied Reliability
    • /
    • v.10 no.4
    • /
    • pp.265-278
    • /
    • 2010
  • Module of the LED traffic signal is the core component for the care of driver and walker. Also it is important one to control the traffic. If it is against the criteria of brightness, it is the source of the people's death and traffic congestion. Therefore, it is a list of articles desired the security of stability. However, there is not the analysis of failure and not preserve the uniformity of quality. Therefore, it is necessary to establish the criteria of appreciation for the module of the LED traffic signal to analysis the data of failure. In this paper, we investigate the performance test, environment field test and test of reliability appreciation to improve the reliability. We also set up the criteria of success decision using the real measurement data.

Accelerated Life Test Design of Bladder Type Accumulator Assembly for Helicopter (헬기용 블래더형 축압기 조립체의 가속수명시험 설계)

  • Kim, Dae-Yu;Hur, Jang-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.239-245
    • /
    • 2018
  • The importance of reliability in the development of weapons systems and reliability tests has been emphasized recently. Therefore, this study evaluated a reliability test design method of a bladder type accumulator and proposed a process for reliability test design. To design the reliability test of the accumulator, the main failure modes and failure mechanisms were investigated, and the main stress factors were analyzed to select the appropriate acceleration model. A steady - state reliability test was designed according to the number of samples, and the reliability level and accelerated life test time were calculated according to the acceleration factor computed using the selected acceleration model.

Assessing Infinite Failure Software Reliability Model Using SPC (Statistical Process Control) (통계적 공정관리(SPC)를 이용한 무한고장 소프트웨어 신뢰성 모형에 대한 접근방법 연구)

  • Kim, Hee Cheul;Shin, Hyun Cheul
    • Convergence Security Journal
    • /
    • v.12 no.6
    • /
    • pp.85-92
    • /
    • 2012
  • There are many software reliability models that are based on the times of occurrences of errors in the debugging of software. It is shown that it is possible to do asymptotic likelihood inference for software reliability models based on infinite failure model and non-homogeneous Poisson Processes (NHPP). For someone making a decision about when to market software, the conditional failure rate is an important variables. The finite failure model are used in a wide variety of practical situations. Their use in characterization problems, detection of outliers, linear estimation, study of system reliability, life-testing, survival analysis, data compression and many other fields can be seen from the many study. Statistical Process Control (SPC) can monitor the forecasting of software failure and there by contribute significantly to the improvement of software reliability. Control charts are widely used for software process control in the software industry. In this paper, we proposed a control mechanism based on NHPP using mean value function of log Poission, log-linear and Parto distribution.

Optimum Structural Design of Stiffened Cylinders Based on Reliability Analysis (신뢰성 해석에 기초한 보강된 실린더 부재의 최적구조설계)

  • Joo-Sung,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.4
    • /
    • pp.67-71
    • /
    • 1990
  • This study is concerned with the optimum design of stiffened cylindrical members frequently found in floating offshore platforms with constraints on reliability. Minimised is the expected total cost which is composed of the structural cost and the expected failure cost. Some design requirements drawn from variotus design codes are also considered as constraints. Reliability of critical component in a structure only is considered in this paper and the system failure is discarded since the probability of system failure is in general much smaller than the probability of component failure and it is very difficult to evaluate the cost due to system failure. Ultimate strength only is considered and not the fatigue strength. Several parametric studies are illustrated and the optimum solutions for different strength models which are now in use for the design of stiffened cylinders are derived to show the optimum designs against different strength models for the same type of structural component. The present results lead to the important conclusions relating to the posibility of more cost saving in the design of such structure through the reliability-based optimisation process.

  • PDF