• Title/Summary/Keyword: Facing Material

Search Result 226, Processing Time 0.029 seconds

Crystal orientation of $Ni_{81}Fe_{19}$ thin film prepared by facing targets sputtering method (대향타겟식 스퍼터법으로 제작한 $Ni_{81}Fe_{19}$박막의 결정배향성)

  • 김용진;박창옥;최동진;김경환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.185-188
    • /
    • 2000
  • Crystal orientation of Ni$_{18}$ $Fe_{19}$ thin films prepared by facing targets sputtering system was investigated. FTS system can deposit a high quality thin film and control deposition conditions in wide range. T he crystallographic characteristics of Ni$_{18}$ $Fe_{19}$ thin films on variation of thickness and substrate tempera ture was investigated by XRD and AFM. As a result, we obtained Ni$_{18}$ $Fe_{19}$ thin films prepared at subst rate temperature room temperature, thickness 160nm and over revealed good crystal orientation to [111] direction.irection.

  • PDF

Flow Control using DBD Plasma on Backward-facing Step (DBD 플라즈마를 이용한 후향계단 아음속 유동 제어)

  • Song, Ji-Woon;Park, Sul-Ki;Kim, Tae-Hwan;Cho, Hyung-Hee
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.433-436
    • /
    • 2011
  • The effect of plasma on flow characteristics in subsonic flow in backward-facing step is studied. The velocty of main flows are 0.5 m/s. DBD plasma is using for flow control. Stainless foil and polymide films are used as an electrode and dielectric material. The change of flow characteristics are shown by different of plasma generation region in fluid flow.

  • PDF

Estimation for Adaptability of Fiber Reinforced Plastic Composite for LNG Storage Tank (유리섬유강화 플라스틱의 LNG 저장탱크용 합판 대체 가능성 평가)

  • Kim S. B.;Cho J. M.;Cho S. H.;Kwon Y. S.
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.1 s.18
    • /
    • pp.28-32
    • /
    • 2003
  • In order to apply the properties of fiber reinforced plastic(FRP) to support panel of polyurethane foam in LNG storage tank, we estimated the mechanical properties, degree of vapour barrier, chemical stability and thermal conductivity changes as ageing. According to the results, the mechanical strength (i.g. compressive strength, bending strength, tensile strength and shear strength) are more than 30 times higher than those of plywood. The FRP-polyurethane foam(PUF) composites have lower thermal conductivity changes as ageing than plywood-PUF composites. FRP-PUF sandwich composite for LNG storage tank with these remarkable properties are compared the abilities of these structures with those of the conventional structures(plywood-PUF sandwich composite). Finally, we can obtain the effects such as superior mechanical properties and fuel saving through improved ability of vapor barrier.

  • PDF

The effect of deposition condition on the oxidation of TbFeCo thin films in facing targets sputtering system (Facing targets sputtering system에서 TbFeCo박막의 산화에 미치는 제조조건의 영향)

  • 문정탁;김명한
    • Electrical & Electronic Materials
    • /
    • v.7 no.6
    • /
    • pp.511-519
    • /
    • 1994
  • The effect of the deposition conditions, such as the base pressure, working pressure, sputtering power, pre-sputtering, and deposition thickness in facing targets sputtering system(FTS), on the oxidation of the TbFeCo thin films was studied by investigating the magneto-optical properties as well as oxygen analysis by the AES depth profiles. The results showed that the base pressure did not affect the magnetic properties so much, probably due to the short flight distance of the sputtered particles. At the higher sputtering power and lower working pressure with pre-sputtering the oxidation of TbFeCo thin films was decreased. As the film thickness increased the TbFeCo thin films showed the perpendicular anisotropy from in-plane anisotropy overcoming the oxidation effect at the beginning of the sputtering.

  • PDF

A 12-year long-term study on the external deformation behavior of Geosynthetic Reinforced Soil (GRS) walls

  • Won, Myoung-Soo;Lee, O-Hyeon;Kim, You-Seong;Choi, Se-Kyung
    • Geomechanics and Engineering
    • /
    • v.10 no.5
    • /
    • pp.565-575
    • /
    • 2016
  • Geosynthetics reinforced soil (GRS) walls constructed on weak grounds may change in both the horizontal earth pressure and deformation on wall facing. However, only few studies were done in the literature to measure and analyze the horizontal external deformation behavior of GRS walls constructed on soft grounds for a long period of time. The present study describes the external deformation behavior of GRS walls observed for 12-year long-term performance. The horizontal deformation of the geosynthetics-wrapped-facing GRS walls shows a passive behavior along one third of the wall height, from top going downwards, and active behavior for the rest of the wall height. Even if the geogrid and nonwoven geotextiles are exposed directly to sunlight and rainfalls in a span of 12 years, they have functioned well as wall facing. Therefore, the geosynthetic reinforcement material is strong enough to resist ultraviolet rays.

Discharge Characteristics of Facing Targets Sputtering Apparatus with Targets Species (타켓 종류에 따른 대향타겟 스퍼터링 장치의 방전 특성)

  • Keum, Min-Jong;Son, In-Hwan;Shin, Sung-Kwan;Ga, Ch-Hyun;Park, Yong-Seo;Kim, Kyung-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.620-623
    • /
    • 2004
  • In this study, the discharge characteristic of FTS (Facing Targets Sputtering) apparatus was investigated using metal target paramagnetic and ceramic targets such as Zn, Al, $ZnO:Al(Al_2O_3)$, ITO. Threshold voltage and stable stage of discharge show different with target species. Compare with commercial sputtering apparatus, the FTS apparatus is a high-speed sputter method that promotes ionization of sputter gas by screw and reciprocate moving high-speed ${\gamma}$electrons which arrays two targets facing each other, inserts plasma arresting magnetic field to the parallel direction of the center axis of both targets, discharged from targets and accelerated at the cathode falling area. Especially, we notice that the FTS method using ceramic target has stable discharge characteristic even by DC power source.

  • PDF

Preparation of Co-Cr Thin Films by Facing Targets Sputtering (대향타겟스퍼터링에 의한 Co-Cr 박막의 제작)

  • ;;;;;S. Nakagawa;M.Naoe
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.5
    • /
    • pp.418-422
    • /
    • 1998
  • The Co-Cr films are one of the most suitable candidates for perpendicular magnetic recording media. The facing targets sputtering(FTS) system has a advantage of preparing films over a wide range of working gas pressure on plasma-free substrate. In this study, we investigated the possibility of employing FTS system for depositing Co-Cr films. The Co-Cr thin films were deposited with various sputter gas pressure($P_Ar$, 0.1~10mTorr) by using FTS apparatus at temperature of $40^{\circ}C and 220^{\circ}C$, respectively. Crystallographic and magnetic characteristics were evaluated by x-ray diffractometry (XRD) and vibrating sample magnetometer(VSM), respectively. Under argon gas pressure at 0.1mTorr, films with morphologically dense microstructure, good c-axis orientation and higher coercivity were obtained. It has been confirmed that the FTS system is very useful for preparing Co-Cr thin film recording media.

  • PDF

AZO Films Prepared by Facing Target Sputtering System

  • Kim, Kyung-Hwan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.5
    • /
    • pp.271-275
    • /
    • 2006
  • Al oped zinc oxide (AZO) films were prepared by Facing Targets Sputtering (FTS) system for TCO applications. The electrical, optical and structural properties of AZO thin films have been investigated with input current, oxygen gas flow ratio and substrate temperature. Deposition was carried out at room temperature and $200^{\circ}C$. Working gas pressures were fixed at 1mTorr. As a result, AZO thin film deposited with an optical transmittance over 80 % and a resistivity about $10^{-4}{Omega}{\cdot}cm$.