• Title/Summary/Keyword: Facility safety design

Search Result 508, Processing Time 0.026 seconds

Development of Road Tunnel Ventilation System with Electrostatic Precipitator (도로터널용 전기집진시스템 개발)

  • Kim, Jong-Ryul;Weon, Jong-Oung
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.80-83
    • /
    • 2008
  • As SOC (Social Overhead Capital) has been expanded, the highway road construction has been accelerated and city road system has been more complicated. So, long road tunnels have been increased and traffic flow rate also has been raised. Accordingly, the exhausting gas of vehicle cars seriously deteriorates the tunnel inside air quality and driving view. In order to improve tunnel inside air quality, we may need to introduce a compulsory ventilation system as well as natural ventilation mechanism. The natural ventilation mechanism is enough for short tunnels, meanwhile longer tunnels require a specific compulsory ventilation facility. Many foreign countries already have been devoting on development of effective tunnel ventilation system and especially, some European nations and Japan have already applied their developed tunnel ventilation system for longer road tunnels. More recently, as the quality of life improved, our concerns about safety of driving and better driving environment have been increased. In order to obtain clearer and longer driving view, we are more interested in EP tunnel ventilation system in order to remove floating contaminants and automobile exhaust gas. Evan though it's been a long time since many European countries and Japan applied more economical and environment-friendly tunnel ventilation system with their self-developed Electrostatic Precipitator, we are still dependant on imported system from foreign nations. Therefore, we need to develop our unique technical know-how for optimum design tools through validity investigation and continuous possibility examination, eventually in order to localize the tunnel ventilation system technology. In this project, we will manufacture test-run products to examine the performance of system in order to develop main parts of tunnel ventilation system such as electrostatic precipitator, high voltage power generator, water treatment system, etc.

  • PDF

A Study on the Survival Kit Development Preparing the Civil Defense Situation (민방위 사태에 대비한 비상생활지원 키트 개발 연구)

  • Kim, Tae-Hwan;Park, Namhee;Yeo, Wookhyun
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.4
    • /
    • pp.376-383
    • /
    • 2012
  • The The purpose of this study is to develop survival kit prepared at the outbreak of the civil defense situation and to explore ways to ensure the safety and well-being of the people. Consider the civil defense shelters in a short two hours, from six days to live long, emergency life support food and other items needed for the basic right to life of the facility users. Minimum survival kit per capita personal weight 4.85kg, state and local governments (the government) is 2.65kg. They consists of a total of 26 items in eight categories such as food, clothing, CBR supplies, cold winter supplies, personal hygiene supplies, medicines, tools, communication supplies.

Dynamic Stability of a Railroad Bridge Using Bi-prestressing Technology (바이프리스트레싱 기법을 이용한 철도교량의 동적안정성)

  • Choi, Sanghyun;Lee, Changsoo;Lim, Jaehoon;Lee, Seungjoon;Yang, Sungdon
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.2
    • /
    • pp.188-194
    • /
    • 2013
  • As the high speed railroad line increases, researches on developing a more economic high speed railroad bridge system have been actively conducted. In this paper, a new type of prestressed concrete girder based on the bi-prestressing technique, which can introduce additional prestress, is presented. The additional prestress can be introduced using a wedge-shaped pin bar into the upper part of the girder section. The applicability of the new girder technique to the high speed railroad bridge is verified via the dynamic stability analysis. Dynamic moving load analyses using the KTX train load are conducted on bridge systems with the span lengths of 30m, 35m, and 40m, respectively. The results of the analysis show that all bridge systems satisfy the limits prescribed in the design specifications to ensure structural stability, driving safety, and ride quality.

Multiple-Silo Performance Assessment Model for the Wolsong LILW Disposal Facility in Korea - PHASE I: Model Development (월성 중저준위 처분시설 다중사일로 안정성 평가 모델 - 1단계: 모델개발)

  • Lim, Doo-Hyun;Kim, Jee-Yeon;Park, Joo-Wan
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.2
    • /
    • pp.99-105
    • /
    • 2011
  • An integrated model for groundwater flow and radionuclide transport analyses is being developed incorporating six underground silos, an excavated damaged zone (EDZ), and fractured host rock. The model considers each silo as an engineered barrier system (EBS) consisting of a waste zone comprising waste packages and disposal container, a buffer zone, and a concrete lining zone. The EDZ is the disturbed zone adjacent to silos and construction & operation tunnels. The heterogeneity of the fractured rock is represented by a heterogeneous flow field, evaluated from discrete fractures in the fractured host rock. Radionuclide migration through the EBS in silos and the fractured host rock is simulated on the established heterogeneous flow field. The current model enables the optimization of silo design and the quantification of the safety margin in terms of radionuclide release.

Designing and Developing an Automatic Robot System for the Itemized Loading of Apple Boxes at the Agriculture Products Processing Center (거점산지유통센터의 사과박스 구분적재 자동화 로봇 시스템 설계 및 구현)

  • Kim, Myung-Sic;Kim, Kyu-Ik;Ryu, Keun Ho
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.11
    • /
    • pp.689-698
    • /
    • 2015
  • Currently, the itemized box loading operation at the Agriculture Products Processing Center which distributes agricultural products for the region is carried out manually. The process of loading agricultural products requires great manpower and had been resolved through the part-time employment of the residents of farm villages. However, recently it has become quite difficult to secure manpower as the aging within the rural community has been intensified. Hence, the necessity for countermeasures such as facility automation or use of robots have become necessary. This study suggests an automatic robot system for the itemized loading of apple boxes at the Agriculture Products Processing Center. The suggested method is to design and develop equipment such as a conveyer, robot, and bar code reader. In addition, a sorting plan, operational control, generation of control information, and software module that could monitor the inside of the Agriculture Products Processing Center is needed. After test-operating and evaluating the developed system, the existing manual work would be replaced with the automated robot system in order to enhance work efficiency and resolve safety issues.

Numerical Simulation on Smoke Movement in Multi-Compartment Enclosure Fires under Pressurized Air Supply Conditions (급기가압 조건에서 복합 구획 공간 화재의 연기 거동에 대한 수치해석 연구)

  • Ko, Gwon Hyun
    • Fire Science and Engineering
    • /
    • v.32 no.6
    • /
    • pp.15-21
    • /
    • 2018
  • This study examined the flow characteristics of fire smoke under pressurized air ventilation conditions by carrying out fire simulations on multi-compartment enclosure, including room, ancillary room and stair case. Fire simulations were conducted for the air-leakage test facility, which was constructed to measure the effective leakage area and aimed to improve the understandings of fire and smoke movement by analyzing the overall behaviors of fire smoke flow and pressure distributions of each compartment. The simulation results showed that the heat release rate of the fires was controlled sensitively by the amount of air supplied by the ventilation system. An analysis of the velocity distributions between the room and ancillary room showed that fire smoke could be leaked to the ancillary room through the upper layer of the door, even under pressurized air supply conditions. From these results, it was confirmed that the fire size and spatial characteristics should be considered for the design and application of a smoke control system by a pressurized air supply.

A Study on the Space Composition for Department of Kidney Dialysis in Regional Public Hospital(1) (지역거점 공공병원의 인공신장부 공간구성에 관한 연구(1))

  • Chai, Choul Gyun;Park, Kyeong Hyeon
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.28 no.2
    • /
    • pp.31-38
    • /
    • 2022
  • Purpose: This study presents the results of the analysis on space utilization of kidney dialysis units in regional public hospitals, which plays a key role in local public medical services. The result aims to achieve safety from infection, allow comfort for the dialysis environment, and stability for medical support. The purpose of this study is to present fundamental data for architectural plans for the kidney dialysis unit, as well as to alleviate potential infectious diseases such as COVID-19. Methods: For research purposes, the investigation and analysis of space utilization were based on architectural floor plans, research papers and literature, related legal systems, and public statistics. Of the main 35 regional public hospitals, in regards to data accessibility, 15 facilities were selected to conduct the survey and analysis for the objective. Results: The space composition by area research results of kidney dialysis units in public hospitals are as follows: Firstly, most targets do not have required rooms in the access and support area, except for the hemodialysis beds in the treatment section. Secondly, the access area requires necessary room and space design that took into consideration of convenience and accessibility for patients. Thirdly, in regards to infection prevention and control, proper circulation and room plan is essential for storage and disposal of contaminated products and linen after use. For the treatment area, the arrangement plan needs to establish a visual connection between the isolation room, the nursing station, and the bed area. Additionally, consideration of circulation in the preparation, treatment, observation, examination, and all other rooms in the facility is required. Lastly, for the support area, the room is designed to consider adequate working and meeting spaces for the medical staff, consultation space for patients or guardians, separate storage and disposal of clean and contaminated items, and the storage of various equipment for dialysis. Implications: In preparation for the increase in chronic kidney failure patients and the spread of infectious diseases, such as COVID-19, the researched data demonstrates the basic guidelines for space composition of kidney dialysis units and the significant role of regional public hospitals.

Space planning about Personal Protective Equipment(PPE) Doffing Area to reduce cross-infection among healthcare workers (의료진 교차감염을 낮추기 위한 음압격리병동 내 개인보호구 탈의구역의 공간구성)

  • Park, Doeun;Lee, hyunjin;Kwon, Soonjung
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.29 no.3
    • /
    • pp.37-44
    • /
    • 2023
  • Purpose: To decrease cross-infection, it's essential to analyze the spatial composition of the 'PPE doffing area'. Instead of solely relying on manpower standards, we should focus on responding to infectious diseases within the context of space planning. By doing so, we can lower the risk for healthcare workers' infection and ensure a level of safety in various environmental changes or new manpower input situations. Methods: This analysis is conducted specifically for facilities with negative pressure isolation wards. Additionally, interview surveys to obtain feedback from healthcare workers and incorporate their expertise into the design of the 'PPE doffing area' have been carried. Results: In a PPE doffing area, the standard spaces include a PPE doffing room, a shower room, and a clothing room. Depending on the facility environment or the level of infectious diseases, a Decontamination room or Anteroom can be optionally added. Healthcare workers who remove their PPE in the PPE doffing room should avoid re-entering the Negative pressure room. The shower room is often underutilized. When planning for a future PPE doffing area, an aisle space or passageway must be included even if a shower room is planned. Implications: This study examined the space used by healthcare workers rather than patients, with a focus on infection prevention through architectural planning rather than individual efforts. However, the investigation was limited to facilities that have been converted from general wards to negative pressure isolation wards, so it cannot be generalized to all infectious disease facilities.

Feasibility of UHPC shields in spent fuel vertical concrete cask to resist accidental drop impact

  • P.C. Jia;H. Wu;L.L. Ma;Q. Peng
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4146-4158
    • /
    • 2022
  • Ultra-high performance concrete (UHPC) has been widely utilized in military and civil protective structures to resist intensive loadings attributed to its excellent properties, e.g., high tensile/compressive strength, high dynamic toughness and impact resistance. At present, aiming to improve the defects of the traditional vertical concrete cask (VCC), i.e., the external storage facility of spent fuel, with normal strength concrete (NSC) shield, e.g., heavy weight and difficult to fabricate/transform, the feasibility of UHPC applied in the shield of VCC is numerically examined considering its high radiation and corrosion resistance. Firstly, the finite element (FE) analyses approach and material model parameters of NSC and UHPC are verified based on the 1/3 scaled VCC tip-over test and drop hammer test on UHPC members, respectively. Then, the refined FE model of prototypical VCC is established and utilized to examine its dynamic behaviors and damage distribution in accidental tip-over and end-drop events, in which the various influential factors, e.g., UHPC shield thickness, concrete ground thickness, and sealing methods of steel container are considered. In conclusion, by quantitatively evaluating the safety of VCC in terms of the shield damage and vibrations, it is found that adopting the 300 mm-thick UHPC shield instead of the conventional 650 mm-thick NSC shield can reduce about 1/3 of the total weight of VCC, i.e., about 50 t, and 37% floor space, as well as guarantee the structural integrity of VCC during the accidental drop simultaneously. Besides, based on the parametric analyses, the thickness of concrete ground in the VCC storage site is recommended as less than 500 mm, and the welded connection is recommended for the sealing method of steel containers.

The optimization study of core power control based on meta-heuristic algorithm for China initiative accelerator driven subcritical system

  • Jin-Yang Li;Jun-Liang Du;Long Gu;You-Peng Zhang;Cong Lin;Yong-Quan Wang;Xing-Chen Zhou;Huan Lin
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.452-459
    • /
    • 2023
  • The core power control is an important issue for the study of dynamic characteristics in China initiative accelerator driven subcritical system (CiADS), which has direct impact on the control strategy and safety analysis process. The CiADS is an experimental facility that is only controlled by the proton beam intensity without considering the control rods in the current engineering design stage. In order to get the optimized operation scheme with the stable and reliable features, the variation of beam intensity using the continuous and periodic control approaches has been adopted, and the change of collimator and the adjusting of duty ratio have been proposed in the power control process. Considering the neutronics and the thermal-hydraulics characteristics in CiADS, the physical model for the core power control has been established by means of the point reactor kinetics method and the lumped parameter method. Moreover, the multi-inputs single-output (MISO) logical structure for the power control process has been constructed using proportional integral derivative (PID) controller, and the meta-heuristic algorithm has been employed to obtain the global optimized parameters for the stable running mode without producing large perturbations. Finally, the verification and validation of the control method have been tested based on the reference scenarios in considering the disturbances of spallation neutron source and inlet temperature respectively, where all the numerical results reveal that the optimization method has satisfactory performance in the CiADS core power control scenarios.