• Title/Summary/Keyword: Facial scanning

Search Result 62, Processing Time 0.025 seconds

3D Facial Scanners: How to Make the Right Choice for Orthodontists

  • Young-Soo Seo;Do-Gil Kim;Gye-Hyeong Lee;Kyungmin Clara Lee
    • Journal of Korean Dental Science
    • /
    • v.17 no.1
    • /
    • pp.1-13
    • /
    • 2024
  • With the advances of digital scanning technology in dentistry, the interests in facial scanning in orthodontics have increased. There are many different manufacturers of facial scanners marketing to the dental practice. How do you know which one will work best for you? What questions should you be asking? We suggest a clinical guideline which may help you make an informed decision when choosing facial scanners. The characteristics of 7 facial scanners were discussed in this article. Here are some considerations for choosing a facial scanner. *Accuracy: For facial scanners to be of real value, having an appropriate camera resolution is necessary to achieve more accurate facial image representation. For orthodontic application, the scanner must create an accurate representation of an entire face. *Ease of Use: Scanner-related issues that impact their ease of use include type of light; scan type; scan time; file type generated by the scanner; unit size and foot print; and acceptance of scans by third-party providers. *Cost: Most of the expenses associated with facial scanning involve the fixed cost of purchase and maintenance. Other expenses include technical support, warranty costs, transmission fees, and supply costs. This article suggests a clinical guideline to make the right choice for facial scanner in orthodontics.

Preliminary Study to Develop an Objective Method for Evaluating Facial Palsy Sequelae Using Facial Scanning System (안면계측검사를 통한 안면마비후유증 객관적 평가도구 개발을 위한 기초 연구)

  • Ryu, Soo Hyeong;Lee, Su Yeon;Kim, Hong Guk;Ryoo, Dek Woo;Kim, Sung Jin;Jeong, Seong Mok;Baek, Seung Won;Goo, Bon Hyuk;Kim, Min Jeong;Park, Yeon Cheol;Seo, Byung Kwan;Nam, Sang Soo;Baek, Yong Hyeon
    • Journal of Acupuncture Research
    • /
    • v.33 no.3
    • /
    • pp.89-99
    • /
    • 2016
  • Objectives : This study was performed to develop objective methods for evaluating facial palsy sequelae using a 3D Facial Scanning System. Methods : Fifty-eight patients with facial palsy sequelae were selected. Their medical records were reviewed to collect demographic data, facial palsy sequelae evaluation, Facial Disability Index questionnaire, and test results (3D Facial Scanning System). Five different facial expressions (at rest, eye closure, eyebrow elevation, smiling, and whistling) were photographed. Sunnybrook Scale was associated with distances between predetermined facial points. Results : The average Sunnybrook composite score was $58.88{\pm}17.31$. Secondary movements (mouth to eye synkinesis, contracture of eye, and contracture of mouth) showed significant difference according to the Sunnybrook Scale. In voluntary movements, eyebrow height at eyebrow elevation, length between mouth angle and central line while whistling, and eyelid width at maximum eye opening showed significant difference. Facial palsy Sequelae Index (FSI) was correlated with Sunnybrook sub-scales (resting symmetry, voluntary movement, and synkinesis). Conclusion : These results demonstrate that a 3D Facial Scanning System is useful for evaluating facial palsy sequelae. This method may facilitate objective evaluation for facial palsy sequelae and it could be applied in clinical trials.

Integrating 3D facial scanning in a digital workflow to CAD/CAM design and fabricate complete dentures for immediate total mouth rehabilitation

  • Hassan, Bassam;Greven, Marcus;Wismeijer, Daniel
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.5
    • /
    • pp.381-386
    • /
    • 2017
  • PURPOSE. To integrate extra-oral facial scanning information with CAD/CAM complete dentures to immediately rehabilitate terminal dentition. MATERIALS AND METHODS. Ten patients with terminal dentition scheduled for total extraction and immediate denture placement were recruited for this study. The patients were submitted to a facial scanning procedure using the in-office PritiMirror scanner with bite registration records in-situ. Definitive stone cast models and bite records were subsequently submitted to a lab scanning procedure using the lab scanner (iSeries DWOS; Dental Wings). The scanned models were used to create a virtual teeth setup of a complete denture. Using the intra-oral bite records as a reference, the virtual setup was incorporated in the facial scan thereby facilitating a virtual clinical evaluation (teeth try-in) phase. After applying necessary adjustments, the virtual setup was submitted to a CAM procedure where a 5-axis industrial milling machine (M7 CNC; Darton AG General) was used to fabricate a full-milled PMMA immediate provisional prosthesis. RESULTS. Total extractions were performed, the dentures were immediately inserted, and subjective clinical fit was evaluated. The immediate provisional prostheses were inserted and clinical fit, occlusion/articulation, and esthetics were subjectively assessed; the results were deemed satisfactory. All provisional prostheses remained three months in function with no notable technical complications. CONCLUSION. Ten patients with terminal dentition were treated using a complete digital approach to fabricate complete dentures using CAD/CAM technology. The proposed technique has the potential to accelerate the rehabilitation procedure starting from immediate denture to final implant-supported prosthesis leading to more predictable functional and aesthetics outcomes.

Linear accuracy of cone-beam computed tomography and a 3-dimensional facial scanning system: An anthropomorphic phantom study

  • Oh, Song Hee;Kang, Ju Hee;Seo, Yu-Kyeong;Lee, Sae Rom;Choi, Hwa-Young;Choi, Yong-Suk;Hwang, Eui-Hwan
    • Imaging Science in Dentistry
    • /
    • v.48 no.2
    • /
    • pp.111-119
    • /
    • 2018
  • Purpose: This study was conducted to evaluate the accuracy of linear measurements of 3-dimensional (3D) images generated by cone-beam computed tomography (CBCT) and facial scanning systems, and to assess the effect of scanning parameters, such as CBCT exposure settings, on image quality. Materials and Methods: CBCT and facial scanning images of an anthropomorphic phantom showing 13 soft-tissue anatomical landmarks were used in the study. The distances between the anatomical landmarks on the phantom were measured to obtain a reference for evaluating the accuracy of the 3D facial soft-tissue images. The distances between the 3D image landmarks were measured using a 3D distance measurement tool. The effect of scanning parameters on CBCT image quality was evaluated by visually comparing images acquired under different exposure conditions, but at a constant threshold. Results: Comparison of the repeated direct phantom and image-based measurements revealed good reproducibility. There were no significant differences between the direct phantom and image-based measurements of the CBCT surface volume-rendered images. Five of the 15 measurements of the 3D facial scans were found to be significantly different from their corresponding direct phantom measurements(P<.05). The quality of the CBCT surface volume-rendered images acquired at a constant threshold varied across different exposure conditions. Conclusion: These results proved that existing 3D imaging techniques were satisfactorily accurate for clinical applications, and that optimizing the variables that affected image quality, such as the exposure parameters, was critical for image acquisition.

Clinical usefulness of facial soft tissues thickness measurement using 3D computed tomographic images (3차원 전산화단층촬영 영상을 이용한 안면 연조직 두께 계측의 임상적 유용성)

  • Jeong Ho-Gul;Kim Kee-Deog;Han Seung-Ho;Hu Kyung-Seok;Lee Jae-Bum;Park Hyok;Choi Seong-Ho;Kim Chong-Kwan;Park Chang-Seo
    • Imaging Science in Dentistry
    • /
    • v.36 no.2
    • /
    • pp.89-94
    • /
    • 2006
  • Purpose : To evaluate clinical usefulness of facial soft tissue thickness measurement using 3D computed tomographic images. Materials and Methods : One cadaver that had sound facial soft tissues was chosen for the study. The cadaver was scanned with a Helical CT under following scanning protocols about slice thickness and table speed; 3 mm and 3 mm/sec, 5 mm and 5 mm/sec, 7 mm and 7 mm/sec. The acquired data were reconstructed 1.5, 2.5, 3.5 mm reconstruction interval respectively and the images were transferred to a personal computer. Using a program developed to measure facial soft tissue thickness in 3D image, the facial soft tissue thickness was measured. After the ten-time repeation of the measurement for ten times, repeated measure analysis of variance (ANOVA) was adopted to compare and analyze the measurements using the three scanning protocols. Comparison according to the areas was analyzed by Mann-Whitney test. Results : There were no statistically significant intraobserver differences in the measurements of the facial soft tissue thickness using the three scanning protocols (p>0.05). There were no statistically significant differences between measurements in the 3 mm slice thickness and those in the 5 mm, 7 mm slice thickness (p>0.05). There were statistical differences in the 14 of the total 30 measured points in the 5 mm slice thickness and 22 in the 7 mm slice thickness. Conclusion : The facial soft tissue thickness measurement using 3D images of 7 mm slice thickness is acceptable clinically, but those of 5 mm slice thickness is recommended for the more accurate measurement.

  • PDF

Accuracy and precision of integumental linear dimensions in a three-dimensional facial imaging system

  • Kim, Soo-Hwan;Jung, Woo-Young;Seo, Yu-Jin;Kim, Kyung-A;Park, Ki-Ho;Park, Young-Guk
    • The korean journal of orthodontics
    • /
    • v.45 no.3
    • /
    • pp.105-112
    • /
    • 2015
  • Objective: A recently developed facial scanning method uses three-dimensional (3D) surface imaging with a light-emitting diode. Such scanning enables surface data to be captured in high-resolution color and at relatively fast speeds. The purpose of this study was to evaluate the accuracy and precision of 3D images obtained using the Morpheus 3D$^{(R)}$ scanner (Morpheus Co., Seoul, Korea). Methods: The sample comprised 30 subjects aged 24.34 years (mean $29.0{\pm}2.5$ years). To test the correlation between direct and 3D image measurements, 21 landmarks were labeled on the face of each subject. Sixteen direct measurements were obtained twice using digital calipers; the same measurements were then made on two sets of 3D facial images. The mean values of measurements obtained from both methods were compared. To investigate the precision, a comparison was made between two sets of measurements taken with each method. Results: When comparing the variables from both methods, five of the 16 possible anthropometric variables were found to be significantly different. However, in 12 of the 16 cases, the mean difference was under 1 mm. The average value of the differences for all variables was 0.75 mm. Precision was high in both methods, with error magnitudes under 0.5 mm. Conclusions: 3D scanning images have high levels of precision and fairly good congruence with traditional anthropometry methods, with mean differences of less than 1 mm. 3D surface imaging using the Morpheus 3D$^{(R)}$ scanner is therefore a clinically acceptable method of recording facial integumental data.

The Effectiveness of Korean Medicine Treatment Including Facial Chuna Manual Therapy for the Sequelae of Bell's Palsy: Four Case Series (특발성 안면마비 후유증에 대한 안면추나를 포함한 한의한 치료: 4예 보고)

  • Seojung Ha;Byung-Jun Kim;Minjeong Kim
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.33 no.2
    • /
    • pp.87-94
    • /
    • 2023
  • This study aims to demonstrate the effectiveness of facial chuna manual therapy in treating the sequelae of Bell's palsy. Four patients were treated with facial chuna manual therapy once a week for 4 weeks, consisting of facial muscle massage, acupoint pressure, contracture chuna, and synkinesis chuna. The changes in symptoms (contracture and sysnkinesis) were measured using the Sunnybrook Facial Grading Scale (SFGS), Synkinesis Assessment Questionnaire (SAQ), Facial Disability Index (FDI), Contracture/Synkinesis scale using a facial scanning system, Numeric Rating scale (NRS) for synkinesis or contracture, and Was It Worth It questionnaire. After treatments, SFGS, Contracture/Synkinesis scale, and NRS for synkinesis or contracture showed significant improvements. SFGS increased in three cases from 39~76 to 52~85 score. SAQ decreased in two cases from 53.33~57.78 to 40.00~55.56. FDI increased in three cases from 120~128 to 138~145. These results suggest that Korean medicine treatment, including facial chuna manual therapy can be effective in improving the sequelae of Bell's palsy.

Three-dimensional Assessment of Facial Soft Tissue after Orthognathic Surgery in Patients with Skeletal Class III and Asymmetry

  • Lee, Jong-Hyeon;Choi, Dong-Soon;Cha, Bong-Kuen;Park, Young-Wook;Jang, Insan
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.35 no.6
    • /
    • pp.360-367
    • /
    • 2013
  • Purpose: The purpose of this study was to perform three-dimensional (3D) assessment of facial soft tissue in patients with skeletal Class III and mandibular asymmetry after orthognathic surgery. Methods: Samples consisted of 3D facial images obtained from five patients with A point-nasion-B point angle less than 2 degrees, and more than 5 mm of menton deviation. All patients had been treated at Gangneung-Wonju National University Dental Hospital from 2009 to 2012. They had undergone orthognathic surgery of Lefort I, and sagittal split osteotomy for correction of skeletal deformity, and orthodontic treatment. Facial scanning was performed before treatment (T1) and post-surgical orthodontic treatment (T2). Linear and angle variables of soft tissue landmarks, antero-posterior facial depth, and facial volume were measured. Results: No significant differences in width of the alar base, mouth width, and nasal canting were observed between T1 and T2. However, lip deviation, menton deviation, alar canting, lip canting, and menton deviation angle were significantly reduced at T2. Antero-posterior facial depth on the axial plane parallel to the left cheilion was significantly reduced on the deviated side and significantly increased on the non-deviated side at T2. Volume of the lower lateral and lower medial parts of the face was reduced on the deviated side, and volume of upper lateral and lower lateral parts on the non-deviated side was significantly increased at T2. Conclusion: After orthognathic surgery, facial asymmetry of soft tissue was improved following skeletal changes, especially the mandibular region. Although the length of the alar base and mouth width did not change, lip and soft tissue menton were displaced to the medial side after treatment. Facial depth also became symmetric after treatment. Facial volume showed a decrease on the lower part of the deviated side and that on lateral parts of the non-deviated side showed an increase after treatment.

Spectrum-Based Color Reproduction Algorithm for Makeup Simulation of 3D Facial Avatar

  • Jang, In-Su;Kim, Jae Woo;You, Ju-Yeon;Kim, Jin Seo
    • ETRI Journal
    • /
    • v.35 no.6
    • /
    • pp.969-979
    • /
    • 2013
  • Various simulation applications for hair, clothing, and makeup of a 3D avatar can provide more useful information to users before they select a hairstyle, clothes, or cosmetics. To enhance their reality, the shapes, textures, and colors of the avatars should be similar to those found in the real world. For a more realistic 3D avatar color reproduction, this paper proposes a spectrum-based color reproduction algorithm and color management process with respect to the implementation of the algorithm. First, a makeup color reproduction model is estimated by analyzing the measured spectral reflectance of the skin samples before and after applying the makeup. To implement the model for a makeup simulation system, the color management process controls all color information of the 3D facial avatar during the 3D scanning, modeling, and rendering stages. During 3D scanning with a multi-camera system, spectrum-based camera calibration and characterization are performed to estimate the spectrum data. During the virtual makeup process, the spectrum data of the 3D facial avatar is modified based on the makeup color reproduction model. Finally, during 3D rendering, the estimated spectrum is converted into RGB data through gamut mapping and display characterization.

Anatomic Description of the Infraorbital Soft Tissues by Three-dimensional Scanning System

  • Peralta, Alonso Andres Hormazabal;Choi, You-Jin;Hu, Hyewon;Hu, Kyung-Seok;Kim, Hee-Jin
    • Journal of Korean Dental Science
    • /
    • v.14 no.2
    • /
    • pp.101-109
    • /
    • 2021
  • Purpose: For minimally invasive procedures, three-dimensional (3D) anatomical knowledge of the structures of the face is essential. This study aimed to describe the thickness of the skin and subcutaneous tissue and depths of the facial muscles located in the infraorbital region using a 3D scanner to provide critical clinical anatomical guidelines for improving minimally invasive cosmetic procedures. Materials and Methods: The 3D scanning images of 38 Korean cadavers (22 males and 16 females; age range: 51~94 years at the time of death) were analyzed. Eight facial landmarks (P1~P8) were marked on the cadaveric faces. The images were scanned in three steps-undissected face, hemiface after skinning, and revealing the facial muscles. Student's t-test was used to identify significant differences. Result: The skin and subcutaneous tissue tended to become thicker from the upper to lower and medial to lateral aspects, and the muscles followed the same pattern as that of the most superficial located muscle and the deepest located muscles. No significant sex-related differences were found in the skin at any landmark. However, the muscles tended to be deeper in the female participants. Conclusion: The study data can serve as a basis for creating or enhancing clinical anatomy-based guidelines or improving procedures in the infraorbital region.