• Title/Summary/Keyword: Facial recognition

Search Result 716, Processing Time 0.024 seconds

3D Face Recognition in the Multiple-Contour Line Area Using Fuzzy Integral (얼굴의 등고선 영역을 이용한 퍼지적분 기반의 3차원 얼굴 인식)

  • Lee, Yeung-Hak
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.4
    • /
    • pp.423-433
    • /
    • 2008
  • The surface curvatures extracted from the face contain the most important personal facial information. In particular, the face shape using the depth information represents personal features in detail. In this paper, we develop a method for recognizing the range face images by combining the multiple face regions using fuzzy integral. For the proposed approach, the first step tries to find the nose tip that has a protrusion shape on the face from the extracted face area and has to take into consideration of the orientated frontal posture to normalize. Multiple areas are extracted by the depth threshold values from reference point, nose tip. And then, we calculate the curvature features: principal curvature, gaussian curvature, and mean curvature for each region. The second step of approach concerns the application of eigenface and Linear Discriminant Analysis(LDA) method to reduce the dimension and classify. In the last step, the aggregation of the individual classifiers using the fuzzy integral is explained for each region. In the experimental results, using the depth threshold value 40 (DT40) show the highest recognition rate among the regions, and the maximum curvature achieves 98% recognition rate, incase of fuzzy integral.

  • PDF

Research on Classification of Human Emotions Using EEG Signal (뇌파신호를 이용한 감정분류 연구)

  • Zubair, Muhammad;Kim, Jinsul;Yoon, Changwoo
    • Journal of Digital Contents Society
    • /
    • v.19 no.4
    • /
    • pp.821-827
    • /
    • 2018
  • Affective computing has gained increasing interest in the recent years with the development of potential applications in Human computer interaction (HCI) and healthcare. Although momentous research has been done on human emotion recognition, however, in comparison to speech and facial expression less attention has been paid to physiological signals. In this paper, Electroencephalogram (EEG) signals from different brain regions were investigated using modified wavelet energy features. For minimization of redundancy and maximization of relevancy among features, mRMR algorithm was deployed significantly. EEG recordings of a publically available "DEAP" database have been used to classify four classes of emotions with Multi class Support Vector Machine. The proposed approach shows significant performance compared to existing algorithms.

Design of Robust Face Recognition System with Illumination Variation Realized with the Aid of CT Preprocessing Method (CT 전처리 기법을 이용하여 조명변화에 강인한 얼굴인식 시스템 설계)

  • Jin, Yong-Tak;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.1
    • /
    • pp.91-96
    • /
    • 2015
  • In this study, we introduce robust face recognition system with illumination variation realized with the aid of CT preprocessing method. As preprocessing algorithm, Census Transform(CT) algorithm is used to extract locally facial features under unilluminated condition. The dimension reduction of the preprocessed data is carried out by using $(2D)^2$PCA which is the extended type of PCA. Feature data extracted through dimension algorithm is used as the inputs of proposed radial basis function neural networks. The hidden layer of the radial basis function neural networks(RBFNN) is built up by fuzzy c-means(FCM) clustering algorithm and the connection weights of the networks are described as the coefficients of linear polynomial function. The essential design parameters (including the number of inputs and fuzzification coefficient) of the proposed networks are optimized by means of artificial bee colony(ABC) algorithm. This study is experimented with both Yale Face database B and CMU PIE database to evaluate the performance of the proposed system.

Effective Eye Detection for Face Recognition to Protect Medical Information (의료정보 보호를 위해 얼굴인식에 필요한 효과적인 시선 검출)

  • Kim, Suk-Il;Seok, Gyeong-Hyu
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.5
    • /
    • pp.923-932
    • /
    • 2017
  • In this paper, we propose a GRNN(: Generalized Regression Neural Network) algorithms for new eyes and face recognition identification system to solve the points that need corrective action in accordance with the existing problems of facial movements gaze upon it difficult to identify the user and. Using a Kalman filter structural information elements of a face feature to determine the authenticity of the face was estimated future location using the location information of the current head and the treatment time is relatively fast horizontal and vertical elements of the face using a histogram analysis the detected. And the light obtained by configuring the infrared illuminator pupil effects in real-time detection of the pupil, the pupil tracking was to extract the text print vector. The abstract is to be in fully-justified italicized text as it is here, below the author information.

A Study on the Real Somatotype and the Recognized Somatotype of Middle Ages Women (중년 여성의 실제 체형과 이상적 체형에 관한 연구)

  • Lee, Young-A;Lee, Sang-Eun
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.10 no.1
    • /
    • pp.1-9
    • /
    • 2008
  • The purpose of this research is to lay the foundation that middle aged woman takes care of more healthy, beautiful, attractive external features and prepares successful ageing on studying a difference of recognition between an actual somatotype and an ideal somatotype after we examine an actual somatotype and an ideal somatotype in the object of about $40{\sim}50$ middle-aged woman, dwells in Seoul, is the main group of a home consumption socially. The result of comparing a difference between an actual somatotype and an ideal somatotype was showing that in case of a facial form, the group which their faces are an egg-shaped prefers an egg-shaped and the group which their faces are a round-shaped prefers a round-shaped. In case of a silhouette, all groups prefers a normal type most. In case of a shoulder's type, all groups prefer a normal type most. In case of a shoulder-waist line, all groups prefers a Y line most. In case of a breast's form, all groups prefer a normal type most. In case of a back's form, all groups prefer a normal type most. In case of a buttocks' form, all groups prefers a normal type most. In case of a leg's form, all groups prefers a normal type most. On putting together research result as yet, middle aged women wish a similar somatotype irrespective of an age, an obesity measurement and this means a recognition of making an effort to be beautiful is alike. Therefore, it is necessary to recognize a somatotype of middle aged women uprightly and it must be accomplished a continuous, systematic consultation and education about a weight-control on exercising and not to mention of making a desirable eating habit.

  • PDF

Face and Hand Tracking Algorithm for Sign Language Recognition (수화 인식을 위한 얼굴과 손 추적 알고리즘)

  • Park, Ho-Sik;Bae, Cheol-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.11C
    • /
    • pp.1071-1076
    • /
    • 2006
  • In this paper, we develop face and hand tracking for sign language recognition system. The system is divided into two stages; the initial and tracking stages. In initial stage, we use the skin feature to localize face and hands of signer. The ellipse model on CbCr space is constructed and used to detect skin color. After the skin regions have been segmented, face and hand blobs are defined by using size and facial feature with the assumption that the movement of face is less than that of hands in this signing scenario. In tracking stage, the motion estimation is applied only hand blobs, in which first and second derivative are used to compute the position of prediction of hands. We observed that there are errors in the value of tracking position between two consecutive frames in which velocity has changed abruptly. To improve the tracking performance, our proposed algorithm compensates the error of tracking position by using adaptive search area to re-compute the hand blobs. The experimental results indicate that our proposed method is able to decrease the prediction error up to 96.87% with negligible increase in computational complexity of up to 4%.

A Real-Time Face Detection/Tracking Methodology Using Haar-wavelets and Skin Color (Haar 웨이블릿 특징과 피부색 정보를 이용한 실시간 얼굴 검출 및 추적 방법)

  • Park Young-Kyung;Seo Hae-Jong;Min Kyoung-Won;Kim Joong-Kyu
    • The KIPS Transactions:PartB
    • /
    • v.13B no.3 s.106
    • /
    • pp.283-294
    • /
    • 2006
  • In this paper, we propose a real-time face detection/tracking methodology with Haar wavelets and skin color. The proposed method boosts face detection and face tracking performance by combining skin color and Haar wavelets in an efficient way. The proposed method resolves the problem such as rotation and occlusion due to the characteristic of the condensation algorithm based on sampling despite it uses same features in both detection and tracking. In particular, it can be applied to a variety of applications such as face recognition and facial expression recognition which need an exact position and size of face since it not only keeps track of the position of a face, but also covers the size variation. Our test results show that our method performs well even in a complex background, a scene with varying face orientation and so on.

The Implementation of Automatic Compensation Modules for Digital Camera Image by Recognition of the Eye State (눈의 상태 인식을 이용한 디지털 카메라 영상 자동 보정 모듈의 구현)

  • Jeon, Young-Joon;Shin, Hong-Seob;Kim, Jin-Il
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.3
    • /
    • pp.162-168
    • /
    • 2013
  • This paper examines the implementation of automatic compensation modules for digital camera image when a person is closing his/her eyes. The modules detect the face and eye region and then recognize the eye state. If the image is taken when a person is closing his/her eyes, the function corrects the eye and produces the image by using the most satisfactory image of the eye state among the past frames stored in the buffer. In order to recognize the face and eye precisely, the pre-process of image correction is carried out using SURF algorithm and Homography method. For the detection of face and eye region, Haar-like feature algorithm is used. To decide whether the eye is open or not, similarity comparison method is used along with template matching of the eye region. The modules are tested in various facial environments and confirmed to effectively correct the images containing faces.

Performance Comparison of Skin Color Detection Algorithms by the Changes of Backgrounds (배경의 변화에 따른 피부색상 검출 알고리즘의 성능 비교)

  • Jang, Seok-Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.3
    • /
    • pp.27-35
    • /
    • 2010
  • Accurately extracting skin color regions is very important in various areas such as face recognition and tracking, facial expression recognition, adult image identification, health-care, and so forth. In this paper, we evaluate the performances of several skin color detection algorithms in indoor environments by changing the distance between the camera and the object as well as the background colors of the object. The distance is from 60cm to 120cm and the background colors are white, black, orange, pink, and yellow, respectively. The algorithms that we use for the performance evaluation are Peer algorithm, NNYUV, NNHSV, LutYUV, and Kimset algorithm. The experimental results show that NNHSV, NNYUV and LutYUV algorithm are stable, but the other algorithms are somewhat sensitive to the changes of backgrounds. As a result, we expect that the comparative experimental results of this paper will be used very effectively when developing a new skin color extraction algorithm which are very robust to dynamic real environments.

Facial Detection using Haar-like Feature and Bezier Curve (Haar-like와 베지어 곡선을 이용한 얼굴 성분 검출)

  • An, Kyeoung-Jun;Lee, Sang-Yong
    • Journal of Digital Convergence
    • /
    • v.11 no.9
    • /
    • pp.311-318
    • /
    • 2013
  • For face detection techniques, the correctness of detection decreases with different lightings and backgrounds so such requires new methods and techniques. This study has aimed to obtain data for reasoning human emotional information by analyzing the components of the eyes and mouth that are critical in expressing emotions. To do this, existing problems in detecting face are addressed and a detection method that has a high detection rate and fast processing speed good at detecting environmental elements is proposed. This method must detect a specific part (eyes and a mouth) by using Haar-like Feature technique with the application of an integral image. After which, binaries detect elements based on color information, dividing the face zone and skin zone. To generate correct shape, the shape of detected elements is generated by using a bezier curve-a curve generation algorithm. To evaluate the performance of the proposed method, an experiment was conducted by using data in the Face Recognition Homepage. The result showed that Haar-like technique and bezier curve method were able to detect face elements more elaborately.