• Title/Summary/Keyword: Facial expression

Search Result 634, Processing Time 0.035 seconds

Mapping facial expression onto internal states (얼굴표정에 의한 내적상태 추정)

  • 한재현;정찬섭
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1998.04a
    • /
    • pp.118-123
    • /
    • 1998
  • 얼굴표정과 내적상태의 관계 모형을 수립하기 위한 기초 자료로서 얼굴표정과 내적상태의 대응관계를 조사하였다. 심리적으로 최소유의미거리에 있는 두 내적상태는 서로 구별되는 얼굴표정과 내적상태의 일대일 대응 관계가 성립한다는 것을 발결하였다. 얼굴표정 차원값과 내적상태 차원값의 관계 구조를 파악하기 위하여 중다회귀분석을 실시한 결과, 쾌-불쾌상태는 입의 너비에 의해서, 각성-수면상태는 눈과 입이 열린 정도에 의해서 얼굴표정에 민감하게 반영되는 것으로 나타났다. 얼굴표정 차원 열 두개가 내적상태 차원 상의 변화를 설명하는 정도는 40%내외였다. 선형모형이 이처럼 높은 예측력을 갖는다는 것은 이 두 변수 사이에 비교적 단순한 수리적 대응 구조가 존재한다는 것을 암시한다.

  • PDF

Generation of Facial Expression through Analyzing Eigen-Optical-Flows (고유광류 분석에 의한 얼굴 표정 생성)

  • 김경수;최형일
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.03a
    • /
    • pp.165-168
    • /
    • 1998
  • 얼굴을 인식하는 연구 분야는 얼굴 영상을 분석하는 과정을 거친다. 또한, 얼굴 영상 분석은 얼굴 영상을 이용하는 모든 분야의 연구에 필요한 전처리 과정이라고 할 수 있다. 그러나 얼굴 영상을 분석하는 일은 많은 비용이 든다. 본 연구에서는 이러한 분석과정을 거치지 않고 얼굴 영상을 변형한다. 입력되어지는 얼굴 영상에 나타나는 얼굴 표정을 파악하기 위하여 입력되는 데이터의 변화를 가장 잘 표현해 주는 것으로 널리 알려져 있는 고유 벡터를 이용하며, 기존의 영상을 변형한새로운 영상을 생성하기 위해서 가장 직관적으로 사용할 수 있지만, 광류 영상을 구하는 과정이 시간적으로 많은 비용을 요구하기 때문에, 본 연구에서는 일반 영상에 대한 고유 벡터와 광류 영상에 대한 교유 벡터를 이용하여 고유 벡터 공간 상의 가중치 벡터를 전달하는 방법으로 영상을 처리할 때마다 수행하여야 하는 광류 계산과정을 제거하였다.

  • PDF

Realtime Face Recognition by Analysis of Feature Information (특징정보 분석을 통한 실시간 얼굴인식)

  • Chung, Jae-Mo;Bae, Hyun;Kim, Sung-Shin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.9
    • /
    • pp.822-826
    • /
    • 2001
  • The statistical analysis of the feature extraction and the neural networks are proposed to recognize a human face. In the preprocessing step, the normalized skin color map with Gaussian functions is employed to extract the region of face candidate. The feature information in the region of the face candidate is used to detect the face region. In the recognition step, as a tested, the 120 images of 10 persons are trained by the backpropagation algorithm. The images of each person are obtained from the various direction, pose, and facial expression. Input variables of the neural networks are the geometrical feature information and the feature information that comes from the eigenface spaces. The simulation results of 10 persons show that the proposed method yields high recognition rates.

  • PDF

Realistic 3D Facial Expression Animation Based on Muscle Model (근육 모델 기반의 자연스러운 3차원 얼굴 표정 애니메이션)

  • Lee, Hye-Jin;Chung, Hyun-Sook;Lee, Yill-Byung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.04a
    • /
    • pp.265-268
    • /
    • 2002
  • 얼굴은 성별, 나이, 인종에 따라 다양한 특징을 가지고 있어서 개개인을 구별하기가 쉽고 내적인 상태를 쉽게 볼 수 있는 중요한 도구로 여겨지고 있다. 본 논문은 얼굴표정 애니메이션을 위한 효과적인 방법으로 실제얼굴의 피부조직 얼굴 근육 등 해부학적 구조에 기반한 근육기반모델링을 이용하는 방법을 소개하고자 한다. 제안하는 시스템의 구성은 얼굴 와이어프레임 구성과 폴리곤 메쉬분할 단계, 얼굴에 필요한 근육을 적용시키는 단계, 근육의 움직임에 따른 얼굴 표정생성단계로 이루어진다. 와이어프레임 구성과 폴리곤 메쉬 분할 단계에서는 얼굴모델을 Water[1]가 제안한 얼굴을 기반으로 하였고, 하나의 폴리곤 메쉬를 4등분으로 분할하여 부드러운 3D 얼굴모델을 보여준다. 다음 단계는 얼굴 표정생성에 필요한 근육을 30 개로 만들어 실제로 표정을 지을 때 많이 쓰는 부위에 적용시킨다. 그 다음으로 표정생성단계는 FACS 에서 제안한 Action Unit 을 조합하고 얼굴표정에 따라 필요한 근육의 강도를 조절하여 더 자연스럽고 실제감 있는 얼굴표정 애니메이션을 보여준다.

  • PDF

A Study of Recognizing Degree of Continuous Facial Expression Change (연속적인 얼굴 표정 변화 인식 방법에 관한 연구)

  • Park, Ho-Sik;Bae, Cheol-Soo;Na, Sang-Dong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.04a
    • /
    • pp.737-740
    • /
    • 2002
  • 본 논문에서는 영상에서 연속적인 얼굴 표정 변화 인식 방법에 대하여 제안하였다. 제안된 방법은 가중 결합으로 정합 된 분류 그래프를 이용한 얼굴 특징점 추적과 특징 궤도와 표정 변화 모델의 비교에 의한 얼굴표정 인식의 두 가지 부분으로 구성된다. 표정 변화 모델은 얼굴 특징 동작과 표정의 변화사이의 연관 관계를 표현한 B-spline 곡선을 이용하여 구성된다. 유형뿐만 아니라 표정의 변화 단계까지 인식 할 수 있다. 더욱이 획득된 표정 정보는 다음 프레임의 추적의 지침으로 피드백 됨에 따라 추적의 검색 시간을 감소시킴으로서 교점 확산 구간을 최소화 할 수 있다.

  • PDF

Convolutional Neural Networks for Facial Expression Recognition (얼굴 표정 인식을 위한 Convolutional Neural Networks)

  • Choi, In-Kyu;Song, Hyok;Yoo, Jisang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2016.11a
    • /
    • pp.17-18
    • /
    • 2016
  • 본 논문에서는 딥러닝 기술 중의 하나인 CNN(Convolutional Neural Network) 기반의 얼굴 표정 인식 기법을 제안한다. 제안한 기법에서는 획득한 여섯 가지 주요 표정의 얼굴영상들을 학습 데이터로 이용할 때 분류 성능을 저해시키는 과적합(over-fitting) 문제를 해결하기 위해서 데이터 증대 기법(data augmentation)을 적용한다. 또한 기존의 CNN 구조에서 convolutional layer 및 node의 수를 변경하여 학습 파라미터 수를 대폭 감소시킬 수 있다. 실험 결과 제안하는 데이터 증대 기법 및 개선한 구조가 높은 얼굴 표정 분류 성능을 보여준다는 것을 확인하였다.

  • PDF

Method for Inference of Operators' Thoughts from Eye Movement Data in Nuclear Power Plants

  • Ha, Jun Su;Byon, Young-Ji;Baek, Joonsang;Seong, Poong Hyun
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.129-143
    • /
    • 2016
  • Sometimes, we need or try to figure out somebody's thoughts from his or her behaviors such as eye movement, facial expression, gestures, and motions. In safety-critical and complex systems such as nuclear power plants, the inference of operators' thoughts (understanding or diagnosis of a current situation) might provide a lot of opportunities for useful applications, such as development of an improved operator training program, a new type of operator support system, and human performance measures for human factor validation. In this experimental study, a novel method for inference of an operator's thoughts from his or her eye movement data is proposed and evaluated with a nuclear power plant simulator. In the experiments, about 80% of operators' thoughts can be inferred correctly using the proposed method.

An Analysis of Face Recognition Methods for Recognition of Game Player's Facial Expression (게임 사용자 얼굴표정 인식을 위한 얼굴인식 기법 분석)

  • Yoo, Chae-Gon
    • Journal of Korea Game Society
    • /
    • v.3 no.2
    • /
    • pp.19-23
    • /
    • 2003
  • 컴퓨터 기술의 발전에 따라서 게임분야 역시 다양한 첨단 기술이 적용되고 있다. 예를 들면 강력한 3D가속 기능을 가진 비디오카드, 5.1 채널 사운드, 포스피드백 지원 입력 장치, 운전대, 적외선 센서, 음성 감지기 등이 게임의 입출력 인터페이스로서 이용되고 있다. 전형적인 방법 이외에도 광학방식이나 휴대용 게임기에 대한 플레이 방식에 대한 연구도 활발하다. 최근에는 비디오 게임기에도 사람의 동작을 인식하여 게임의 입력으로 받아들이는 기술이 상용화되기도 하였다. 본 논문에서는 이런 발전 방향을 고려하여 차세대 게임 인터페이스의 방식으로서 사용될 수 있는 사람의 표정 인식을 통한 인터페이스 구현을 위한 접근 방법들에 대하여 고찰을 하고자 한다. 사람의 표정을 입력으로 사용하는 게임은 심리적인 변화를 게임에 적용시킬 수 있으며, 유아나 장애자들이 게임을 플레이하기 위한 수단으로도 유용하게 사용될 수 있다. 영상을 통한 자동 얼굴 인식 및 분석 기술은 다양한 응용분야에 적용될 수 있는 관계로 많은 연구가 진행되어 왔다. 얼굴 인식은 동영상이나 정지영상과 같은 영상의 형태, 해상도, 조명의 정도 등에 따른 요소에 의하여 인식률이나 인식의 목적이 달라진다. 게임플레이어의 표정인식을 위해서는 얼굴의 정확한 인식 방법을 필요로 하며, 이를 위한 비교적 최근의 연구 동향을 살펴보고자 한다.

  • PDF

Facial Expression Recognition without Neutral Expressions (중립표정에 무관한 얼굴표정 인식)

  • Shin Young-Suk
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06b
    • /
    • pp.301-303
    • /
    • 2006
  • 본 논문은 중립 표정과 같은 표정 측정의 기준이 되는 단서 없이 다양한 내적상태 안에서 얼굴표정을 인식할 수 있는 개선된 시스템을 제안한다. 표정정보를 추출하기 위한 전처리작업으로, 백색화(whitening) 단계가 적용되었다. 백색화 단계는 영상데이터들의 평균값이 0이며, 단위분산값으로 균일한 분포를 갖도록 하여 조명 변화에 대한 민감도를 줄인다. 백색화 단계 수행 후 제 1 주성분이 제외된 나머지 주성분들로 이루어진 PCA표상을 표정정보로 사용함으로써 중립 표정에 대한 단서 없이 얼굴표정의 특징추출을 가능하게 하였다. 본 실험 결과는 83개의 내적상태와 일치되는 다양한 얼굴표정들에서 임의로 선택된 표정영상들의 얼굴표정 인식을 수행함으로써 다양하고 자연스런 얼굴 표정인식을 가능하게 하였다.

  • PDF

Facial Expression Recognition using Model-based Feature Extraction in Image Sequence (동영상에서의 모델기반 특징추출을 이용한 얼굴 표정인식)

  • Park Mi-Ae;Choi Sung-In;Im Don-Gak;Ko Je-Pil
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06b
    • /
    • pp.343-345
    • /
    • 2006
  • 본 논문에서는 ASM(Active Shape Model)과 상태 기반 모델을 사용하여 동영상으로부터 얼굴 표정을 인식하는 방법을 제안한다. ASM을 이용하여 하나의 입력영상에 대한 얼굴요소 특징점들을 정합하고 그 과정에서 생성되는 모양 파라미터 벡터를 추출한다. 동영상에 대해 추출되는 모양 파라미터 벡터 집합을 세 가지상태 중 한 가지를 가지는 상태 벡터로 변환하고 분류기를 통해 얼굴의 표정을 인식한다. 분류단계에서는 분류성능을 높이기 위해 새로운 개체 기반 학습 방법을 제안한다. 실험에서는 새로이 제안한 개체 기반 학습 방법이 KNN 분류기보다 더 좋은 인식률을 나타내는 것을 보인다.

  • PDF