Biometric authentication has become an essential part of modern-day security systems, especially in financial institutions like banks. A face recognition-based ATM is a biometric authentication system, that uses facial recognition technology to verify the identity of bank account holders during ATM transactions. This technology offers a secure and convenient alternative to traditional ATM transactions that rely on PIN numbers for verification. The proposed system captures users' pictures and compares it with the stored image in the bank's database to authenticate the transaction. The technology also offers additional benefits such as reducing the risk of fraud and theft, as well as speeding up the transaction process. However, privacy and data security concerns remain, and it is important for the banking sector to instrument solid security actions to protect customers' personal information. The proposed system consists of two stages: the first stage captures the user's facial image using a camera and performs pre-processing, including face detection and alignment. In the second stage, machine learning algorithms compare the pre-processed image with the stored image in the database. The results demonstrate the feasibility and effectiveness of using face recognition for ATM authentication, which can enhance the security of ATMs and reduce the risk of fraud.
얼굴 인식 기술은 다양한 분야에서 활용되고 있지만, 이는 사진 스푸핑과 같은 위조 공격에 취약하다는 문제를 가지고 있다. 이를 극복하기 위한 여러 연구가 진행되고 있지만, 대부분은 멀티모달 카메라와 같은 특별한 장비를 장착하거나 고성능 환경에서 동작하는 것을 전제로 하고 있다. 본 연구는 얼굴 인식 위조 공격 문제를 해결하기 위해, 특별한 장비 없이 일반적인 웹캠에서 동작할 수 있는 LH-FAS v2를 제안한다. 제안된 방법에서는, 머리 자세 추정에는 FSA-Net을, 얼굴 식별에는 ArcFace를 활용하여 사진 스푸핑 여부를 판별한다. 실험을 위해, 사진 스푸핑 공격 비디오로 구성된 VD4PS 데이터셋을 제시하였으며, 이를 통해 LH-FAS v2의 균형 잡힌 정확도와 속도를 확인하였다. 본 방법은 향후 사진 스푸핑 방어에 효과적일 것으로 기대한다.
Biometrics consist of technologies that support automatic identification or verification of identity based on behavioral or physical traits. Biometrics can authenticate identities since they measure unique individual characteristics including fingerprints, hand geometry, iris, hand vascular patterns and facial characteristics. we review the state of the hand vascular patterns identification technology and compare other competitive authentication technologies such as cryptography, electronic signature and PKI.
본 논문에서는 일련의 디지털 사진들을 특정한 인물에 기반하여 브라우징 하는 것을 돕기 위한 인물 기반 사진 색인 방법을 제안한다. 기존의 인물 기반 영상 색인의 경우, 얼굴 특징값만을 인물 특정값으로 이용하였다. 이에 반하여, 제안하는 방법의 주 된 목적은 얼굴의 주변 정보인 상황 및 옷 정보를 얼굴 정보와 함께 조합하여 색인 과정에 활용함으로써 인물 기반 사진 색인 의 성능을 높이는 것이다 얼굴 특정값과 옷 특징값을 효과적으로 조합하기 위해, 인물을 상황 별로 클러스터링하는 방법이 함께 제안된다 본 논문에서 제안하는 방법의 효용성을 검증하기 위해 1120 장의 사진 데이터베이스를 활용하여 실험을 수행하였다. 실험 결과에서, 기존의 방법에서처럼 얼굴 특정값만을 이용하여 색인을 수행한 경우 약 70%의 평균 성능을 보였으며, 제안 된 방법을 이용하여 색인을 수행한 경우 약 92%의 평균 성능을 보여 제안된 방법이 인물 별 사진 색인에 효과적임을 확인할 수 있었다.
개인의 identity가 더욱더 중요시되는 현시대에서 ID 도용이나 분실로 인한 피해를 막거나 줄이기 위한 최적의 해법으로 생체 인식이 연구되고 있다. 얼굴인식에 의한 생체인식은 특정 시스템의 입력부위에 신체 일부에 대한 접촉을 강요하지 않으므로 최근 많이 각광받고 있는 분야이다. 그러나 입력된 얼굴 영상은 카메라의 포착 거리에 따라 크기가 달라질 수 있고 또한 얼굴의 기울기 등에 의해 같은 영상이라 할지라도 다른 특징 값을 줄 수밖에 없는 문제점을 안고 있다. 본 논문에서는 주어진 입력영상에 대한 이동, 축소, 확대, 그리고 회전의 단순한 기하학적인 처리를 함으로써 정면 얼굴 영상에 대해 정해진 임계값을 초과 하지 않는 범위에서 일정한 특징 값을 얻을 수 있었다. 본 논문에서 구축된 시스템으로 40 세트의 400 영상에 대한 인식 율을 테스트한 결과 92 %의 높은 인식 율을 보였다.
International Journal of Computer Science & Network Security
/
제22권6호
/
pp.319-331
/
2022
The latest global COVID-19 pandemic has made the use of facial masks an important aspect of our lives. People are advised to cover their faces in public spaces to discourage illness from spreading. Using these face masks posed a significant concern about the exactness of the face identification method used to search and unlock telephones at the school/office. Many companies have already built the requisite data in-house to incorporate such a scheme, using face recognition as an authentication. Unfortunately, veiled faces hinder the detection and acknowledgment of these facial identity schemes and seek to invalidate the internal data collection. Biometric systems that use the face as authentication cause problems with detection or recognition (face or persons). In this research, a novel model has been developed to detect and recognize faces and persons for authentication using scale invariant features (SIFT) for the whole segmented face with an efficient local binary texture features (DLBP) in region of eyes in the masked face. The Fuzzy C means is utilized to segment the image. These mixed features are trained significantly in a convolution neural network (CNN) model. The main advantage of this model is that can detect and recognizing faces by assigning weights to the selected features aimed to grant or provoke permissions with high accuracy.
정보화에 의한 지식사회가 점점 고도화 되어갈 수록 사람의 신체에 의한 개인 식별 기술이 많이 요구되고 있다. 지문인식이나 홍채인식 등의 생체인식은 이미 상용화되어 다양한 분야에 이용되고 있다. 사람의 얼굴을 이용한 인식이나 인증분야는 아직 충분한 성능이 나오지 않고 있다. 그러나 앞으로 생체인식이나 얼굴인식에 대한 응용은 점점 그 비중이 커질 것으로 예상된다. 본 논문에서는 얼굴을 각각의 개체단위로 분할한 후 각 개체의 비율적인 특징을 계산하고 특정 계산식에 가중치를 부여하며 분할된 눈과 입의 유사도 검색을 통해 유사성을 확인함으로써 사용자를 인식하는 시스템을 제안한다. 제안한 방법을 실험하고 그 결과의 분석을 통해 인식률이 높아짐을 알 수 있었다.
컴퓨터를 매개로 하여 재화가 생산되고 새로운 용역이 창출되는 21세기를 맞이하며 인터넷환경에서 대화형 엔터테인먼트산업은 무한한 가능성을 가진 것으로 평가되고 있다. 인터넷에서 다루어지는 콘텐츠를 그 성격과 목적에 따라 Identity, Entertainment, Learning, Shopping, Community의 여섯가지 분류에 근거할 때 국내 인터넷 비즈니스의 가장 큰 부분을 차지하는 영역은 Shopping과 Community으로 볼 수 있다. 이 중 Community영역은 사이버 공간에서 가상사회를 형성하기 때문에 인터넷 비즈니스를 위해 매우 중요하다. 채팅(Chatting)프로그램은 PC통신을 근간으로 인터넷으로 발전되어 Community를 구성하는 가장 효과적인 수단이 되고 있다. 이러한 채팅이 기존의 텍스트 환경에서 애니메이션 그래픽 채팅으로 전환된다면 효과적으로 사용자들의 감성적 기호를 수용할 수 있다고 본다. 따라서 본 애니메이션 그래픽 채팅은 미래의 가상현실 기법을 동원한 사이버 채팅프로그램을 지향하면서 연구되었다.
본 논문에서는 얼굴인식 성능 향상을 위해 얼굴 지역 영역 영상들로 학습된 다중개의 심층 합성곱 신경망(Deep Convolutional Neural Network)으로부터 추출된 심층 지역 특징들(Deep local features)을 가중치를 부여하여 결합하는 방법을 제안한다. 제안 방법에서는 지역 영역 집합으로 학습된 다중개의 심층 합성곱 신경망으로부터 추출된 심층 지역 특징들과 해당 지역 영역의 중요도를 나타내는 가중치들을 결합한 특징표현인 '가중치 결합 심층 지역 특징'을 형성한다. 일반화 얼굴인식 성능을 극대화하기 위해, 검증 데이터 집합(validation set)을 사용하여 지역 영역에 해당하는 가중치들을 계산하고 가중치 집합(weight set)을 형성한다. 가중치 결합 심층 지역 특징은 조인트 베이시안(Joint Bayesian) 유사도 학습방법과 최근접 이웃 분류기(Nearest Neighbor classifier)에 적용되어 테스트 얼굴영상의 신원(identity)을 분류하는데 활용된다. 제안 방법은 얼굴영상의 자세, 표정, 조명 변화에 강인하고 기존 최신 방법들과 비교하여 얼굴인식 성능을 향상시킬 수 있음이 체계적인 실험을 통해 검증되었다.
이 글은 현전하는 인도 최초의 연극론서인 "나띠야 샤스뜨라"의 규정을 중심으로 인도의 전통연극과 무용에 계승되어 온 신체표현기법인 앙기까 아비나야의 전통성과 정체성을 고찰한다. 이를 위해 마르기와 데시, 나띠야다르미와 로까다르미의 양식구분 개념, 아비나야의 분류, 앙기까 아비나야의 의의와 중요성, 기원과 형성과정, 범주와 종류, 계통성과 지역적 차이를 살펴본다.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.