본 논문에서는 상관계수와 거리계수의 조합형 유사성 척도에 기반을 둔 효과적인 영상인식 방법을 제안하였다. 여기서 상관계수는 Pearson coefficient에 의한 통계적 유사성을 측정하기 위함이고, 거리계수는 city-block에 의한 공간적인 유사성을 측정하기 위함이다. 또한 영상사이의 전체 유사성은 각 영상이 가지는 특징사이의 유사성으로 계산되며, 영상의 특징은 PCA와 ICA로 각각 추출하였다. 제안된 방법을 40*50 픽셀의 960(30명*4표정*2조명*4포즈)개 다른 표정영상을 대상으로 실험한 결과, ICA 기반 조합형 척도를 이용하는 것이 PCA 기반 조합형 척도보다 우수한 인식률을 가지며, 또한 조명과 같은 주변 환경에도 강건한 인식성능이 있음을 확인하였다.
본 논문에서는 사람 얼굴의 눈, 코, 입을 효과적으로 분류하는 방법을 제안한다. 최근 대부분의 이미지 분류는 CNN(Convolutional Neural Network)을 이용한다. 그러나 CNN으로 추출한 특징은 충분하지 않아 분류 효과가 낮은 경우가 있다. 분류 효과를 더 높이기 위해 새로운 알고리즘을 제안한다. 제안하는 방법은 크게 세 부분으로 나눌 수 있다. 첫 번째는 Haar 특징추출 알고리즘을 사용하여 얼굴의 눈, 코, 입 데이터?을 구성한다. 두번째는 CNN 구조 중 하나인 AlexNet을 사용하여 이미지의 CNN 특징을 추출한다. 마지막으로 Haar 특징 추출 뒤에 합성(Convolution) 연산을 수행하여 Haar-CNN 특징을 추출한다. 그 후 CNN 특징과 Haar-CNN을 혼합하여 Softmax를 이용해 분류한다. 혼합한 특징을 사용한 인식률은 기존의 CNN 특징 보다 약 4% 향상되었다. 실험을 통해 제안하는 방법의 성능을 증명하였다.
본 연구는 구강안면통증 환자의 음성적 특징과 청각 환경에 따른 음성적 변화를 살펴보기 위한 것이다. 구강안면통증 환자 29명과 정상인 31명을 대상으로 그들의 일반 음성과 청각 조건(소음, 음악)에서의 음성 파라미터들을 비교 분석하여 다음과 같은 결론을 얻을 수 있었다. 1. 구강안면통증 환자는 정상인의 음성과 비교해 낮은 F0(Hz) 값과 높은 jitter(%), shimmer(%)값을 가져 정상인에 비해 낮고 불안정한 음성 특징(feature)을 나타내었다. 2. 구강안면통증 환자의 음성은 소음 환경과 비교해 음악 환경에서 낮은 F0(Hz)값과 shimmer(%)값을 가져 보다 이완되고 안정된 음성 특징을 나타내었다. 3. 정상인의 음성은 소음 환경에서 높은 F0(Hz)값을 가졌으나 음악, 소음 환경에 따른 특징적인 차이를 나타내지 않았다. 이상의 결과를 통해 구강안면통증 환자는 정상인의 음성과 비교해 특징적인 차이를 보였으며 외부적인 청각 환경에도 다른 반응 양상을 나타내었다. 따라서 구강안면통증 환자들의 기능적 장애를 보다 효율적으로 치료하기 위해서는 음악과 같은 긍정적인 정서 환경이 제공되어야 할 것으로 사료된다.
지금까지 많은 얼굴 인식 방법들이 제안되었으나, 대부분의 방법들은 특징추출 과정 없이 입력 영상을 1차원 형태의 벡터로 변형한 것을 1차원 특징 벡터로 사용하거나 또는 입력 영상 자체를 특징 매트릭스로 사용하였다. 이와같이 영상 자체를 특징으로 사용하면 조명변화가 심한 데이터베이스에서는 성능이 좋지 않는 것으로 알려져 있다. 본 논문에서는 조명변화에 효과적인 그래디언트와 상관관계의 국부통계를 이용하여 얼굴을 인식하는 방법을 제안하였다. BDIP(block difference of inverse probabilities)는 그래디언트의 국부 통계이다. 그리고 BVLC(block variation of local correlation coefficients)의 두 타입은 상관관계의 국부 통계이다. 입력영상이 얼굴인식 시스템에 들어 오면 먼저 BDIP, BVLC1, BVLC2의 특징 영상을 추출하고 융합한 후, (2D)2 PCA 변환을 거쳐 특징 매트릭스를 얻어서 훈련특징 매트릭스와의 거리를 구하여 최근린 분류기를 이용하여 얼굴 영상을 인식한다. 네 가지 얼굴 데이터베이스, FERET, Weizmann, Yale B, Yale에 대한 실험결과로부터, 제안한 방법이 실험한 여섯 가지 방법 중에서 조명과 얼굴 표정의 변화에 가장 견실하다는 것을 알 수 있었다.
본 논문은 얼굴 인식에 있어 안정적인 인식률을 얻기 위해 입력 영상에 대한 좌우 회전정보를 사용하여 보다 안정적이며 높은 인식률을 내기위한 알고리즘을 제안한다. 제안하는 알고리즘은 웹 카메라 환경에서 얼굴 영상을 입력정보로 사용하여 향상된 인식률을 얻기 위해 영상의 사이즈 축소 및 밝기와 컬러에 대한 정보를 정규화한 후 전처리 과정을 거쳐 얼굴 영역만을 분할 검출한다. 검출된 후보 영역에 대해 주성분분석(PCA)을 적용하여 특징벡터를 구하여 얼굴을 분류한다. 또한 인식률의 오차 범위를 줄이기 위해 입력되는 얼굴 영상에 대한 방향성을 고려하여 좌 우 $45^{\circ}$ 회전 정보를 가진 영상을 대상으로 데이터 셋을 구성하여 PCA로 각각의 특징벡터를 구하였다. 구해진 특징벡터로 안정된 인식률을 얻기 위해 고유공간에 뿌린 후 각각의 특징들을 대상으로 유클리디안(euclidean distant) 거리를 비교하여 최종 얼굴을 인식한다. PCA에 의한 특징벡터는 저차원의 데이터이지만 얼굴을 표현하는데 있어 아무런 문제가 없으며 계산량이 적어 인식 속도도 빠를 수 있다. 본 논문에서 제안하는 방법은 기존의 다른 알고리즘에 비해 빠른 인식과 인식률의 안전성과 정확성을 향상시킬 수 있고 실시간 인식 시스템에도 사용할 수 있다.
영상 인식은 영상획득이 용이하다는 것과 실생활에서 광범위하게 사용될 수 있다는 것으로 인해 활발하게 연구되고 있는 분야이다. 그러나 얼굴영상은 높은 차원의 영상공간으로 인해 이미지 처리가 쉽지 않다. 본 논문은 얼굴 영상 데이터의 차원을 특징적인 벡터로 표현하고 이러한 특징벡터를 통해 얼굴 영상을 인식하는 방법은 제안한다. 제안되는 알고리즘은 두 부분으로 나뉜다. 첫째로는 칼라 영상을 그레이 영상으로 변환할 때 RGB 세 개의 플레인의 평균이 아닌 세 플레인의 주성분을 사용하는 PCA(Principal Component Analysis)를 적용한다. PCA는 칼라 영상을 그레이 영상으로 변환하는 과정과 인식률을 높이기 위한 영상 대비 개선 과정이 동시에 수행한다. 두 번째로는 PCA와 LDA(Linear Discriminant Analysis) 방식을 하나의 과정으로 통합하는 개선된 통합 LDA 방법이다. 두 과정을 통합함으로서 간결한 알고리즘 표현이 가능하며 분리된 단계에서 있을 수 있는 정보 손실을 방지할 수 있다. 제안된 알고리즘은 잘 제어된 대용량 얼굴 데이터베이스에서 개인을 확인하는 분야에 적용되어 성능을 향상시키고 있음을 보여주었고, 추후에는 실시간 상황에서 특정 개인을 확인하는 분야의 기초 알고리즘으로 적용될 수 있다.
본 논문에서 우리는 제약이 없는 배경화면에서 얼굴의 움직임을 이용한 응시점 추적을 위해 얼굴의 특징점(눈, 코, 그리고 입)들을 찾고 head orientation을 구하는 효?거이고 빠른 방법을 제안한다. 얼굴을 찾는 방법이 많이 연구 되어 오고 있으나 많은 부분이 효과적이지 못하거나 제한적인 사항을 필요로 한다. 본 논문에서 제안한 방법은 이진화된 이미지에 기초하고 완전 그래프 매칭을 이용한 유사성을 구하는 방법이다. 즉, 임의의 임계치 값에 의해 이진화된 이미지를 레이블링 한 후 각 쌍의 블록에 대한 유사성을 구한다. 이때 두 눈과 가장 유사성을 갖는 두 블록을 눈으로 선택한다. 눈을 찾은 후 입과 코를 찾아간다. 360$\times$240 이미지의 평균 처리 속도는 0.2초 이내이고 다음 탐색영역을 예상하여 탐색 영역을 줄일 경우 평균 처리속도는 0.15초 이내였다. 그리고 본 논문에서는 얼굴의 움직임을 구하기 위해 각 특징점들이 이루는 각을 기준으로 한 템플릿 매칭을 이용했다. 실험은 다양한 조명환경과 여러 사용자를 대상으로 이루어졌고 속도와 정확성면에서 좋은 결과를 보였다. 도한, 명안정보만을 사용하므로 흑백가메라에서도 사용가능하여 경제적 효과도 기대할 수 있다.
This paper proposes a face recognition technique that effectively combines elastic graph matching (EGM) and Fisherface algorithm. EGM as one of dynamic lint architecture uses not only face-shape but also the gray information of image, and Fisherface algorithm as a class specific method is robust about variations such as lighting direction and facial expression. In the proposed face recognition adopting the above two methods, the linear projection per node of an image graph reduces dimensionality of labeled graph vector and provides a feature space to be used effectively for the classification. In comparison with a conventional method, the proposed approach could obtain satisfactory results in the perspectives of recognition rates and speeds. Especially, we could get maximum recognition rate of 99.3% by leaving-one-out method for the experiments with the Yale Face Databases.
본 논문은 얼굴의 특징점 추적을 위하여 얼굴 회전 변환과의 크기 변환을 고려한 BMA(Block matching alogorithm)을 이용한 방법을 제안한다. 우선 얼굴의 크기 변화를 구하기 위하여 얼굴 영역을 분리하여 그 면적을 구한다. 이 면적을 이전 프레임에서 구한 얼굴 영역의 면적과 비교하여 크기 비례를 계산한다. 다음으로 각 특징점을 중심으로 하는 8방위 영역의 화소들로 집합을 설정한다. 집합을 설정할 때에는 얼굴의 크기 변화를 고려하여 영역 내 화소들을 포함하는 양을 수정한다. 그리고 새로운 영상에서 화소 집합간의 거리가 가장 작은 화소를 새로운 특징점으로 지정한다. 이 때, 회전 변화를 고려하여 화소 집합의 순서를 순차적으로 바꿔 집합 간 거리를 산출한다. 제안하는 방법은 회전과 크기 변환에 강인한 특성을 보일 뿐 아니라, 단순한 움직임 예측 방법인 BMA보다도 쉽고 빠르게 계산된다.
본 논문에서는 칼라 CCD 카메라로부터 입력된 얼굴 영상에서 HSI 정보와 눈, 코, 입 등의 얼굴 영역 특징자와 특징자들의 구조적 특징각을 이용한 얼굴 인식 알고리즘을 제안하였다. 제안한 알고리즘에서는 인간의 시각 체계와 비교적 유사한 HSI좌표계 상에서 피부색에 대한 색상 정보와 명암값 정보를 함께 이용함으로써 얼굴영역 추출의 효율을 높였고, 또한 추출된 얼굴 영역에서 얼굴 인식을 개선을 위해 눈, 코, 입 등의 구조적 위치 정보와 특징자들의 구조적 특징각인 θ/sub 1(ACRCD)/, θ/sub 2(ACRMD)/, θ/sub 3(ANRED)/, θ/sub 4(AMRED)/를 이용하여 얼굴 인식율을 개선하였다. 제안한 알고리즘에서는 기존의 명암 정보를 이용하는 방법과는 달리 색상 정보와 명암 정보 그리고 구조적특징각을 함께 이용함으로써 정확한 얼굴 영역의 검출이 가능하였으며 인식 방법에 있어서 특징자들의 구조적 관계값을 이용함으로써 인식 효율을 개선하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.