• 제목/요약/키워드: Facial Feature

검색결과 517건 처리시간 0.033초

상관계수과 거리계수의 조합형 척도를 이용한 영상인식 (Image Recognition by Using Hybrid Coefficient Measure of Correlation and Distance)

  • 홍성준;조용현
    • 한국지능시스템학회논문지
    • /
    • 제20권3호
    • /
    • pp.343-347
    • /
    • 2010
  • 본 논문에서는 상관계수와 거리계수의 조합형 유사성 척도에 기반을 둔 효과적인 영상인식 방법을 제안하였다. 여기서 상관계수는 Pearson coefficient에 의한 통계적 유사성을 측정하기 위함이고, 거리계수는 city-block에 의한 공간적인 유사성을 측정하기 위함이다. 또한 영상사이의 전체 유사성은 각 영상이 가지는 특징사이의 유사성으로 계산되며, 영상의 특징은 PCA와 ICA로 각각 추출하였다. 제안된 방법을 40*50 픽셀의 960(30명*4표정*2조명*4포즈)개 다른 표정영상을 대상으로 실험한 결과, ICA 기반 조합형 척도를 이용하는 것이 PCA 기반 조합형 척도보다 우수한 인식률을 가지며, 또한 조명과 같은 주변 환경에도 강건한 인식성능이 있음을 확인하였다.

A Study of Facial Organs Classification System Based on Fusion of CNN Features and Haar-CNN Features

  • Hao, Biao;Lim, Hye-Youn;Kang, Dae-Seong
    • 한국정보기술학회논문지
    • /
    • 제16권11호
    • /
    • pp.105-113
    • /
    • 2018
  • 본 논문에서는 사람 얼굴의 눈, 코, 입을 효과적으로 분류하는 방법을 제안한다. 최근 대부분의 이미지 분류는 CNN(Convolutional Neural Network)을 이용한다. 그러나 CNN으로 추출한 특징은 충분하지 않아 분류 효과가 낮은 경우가 있다. 분류 효과를 더 높이기 위해 새로운 알고리즘을 제안한다. 제안하는 방법은 크게 세 부분으로 나눌 수 있다. 첫 번째는 Haar 특징추출 알고리즘을 사용하여 얼굴의 눈, 코, 입 데이터?을 구성한다. 두번째는 CNN 구조 중 하나인 AlexNet을 사용하여 이미지의 CNN 특징을 추출한다. 마지막으로 Haar 특징 추출 뒤에 합성(Convolution) 연산을 수행하여 Haar-CNN 특징을 추출한다. 그 후 CNN 특징과 Haar-CNN을 혼합하여 Softmax를 이용해 분류한다. 혼합한 특징을 사용한 인식률은 기존의 CNN 특징 보다 약 4% 향상되었다. 실험을 통해 제안하는 방법의 성능을 증명하였다.

청각 환경이 구강안면 통증환자의 음성 파라미터에 미치는 영향 (The Effect of Auditory Condition on Voice Parameter of Orofacial Pain Patient)

  • 이주영;백광현;홍정표
    • Journal of Oral Medicine and Pain
    • /
    • 제30권4호
    • /
    • pp.427-432
    • /
    • 2005
  • 본 연구는 구강안면통증 환자의 음성적 특징과 청각 환경에 따른 음성적 변화를 살펴보기 위한 것이다. 구강안면통증 환자 29명과 정상인 31명을 대상으로 그들의 일반 음성과 청각 조건(소음, 음악)에서의 음성 파라미터들을 비교 분석하여 다음과 같은 결론을 얻을 수 있었다. 1. 구강안면통증 환자는 정상인의 음성과 비교해 낮은 F0(Hz) 값과 높은 jitter(%), shimmer(%)값을 가져 정상인에 비해 낮고 불안정한 음성 특징(feature)을 나타내었다. 2. 구강안면통증 환자의 음성은 소음 환경과 비교해 음악 환경에서 낮은 F0(Hz)값과 shimmer(%)값을 가져 보다 이완되고 안정된 음성 특징을 나타내었다. 3. 정상인의 음성은 소음 환경에서 높은 F0(Hz)값을 가졌으나 음악, 소음 환경에 따른 특징적인 차이를 나타내지 않았다. 이상의 결과를 통해 구강안면통증 환자는 정상인의 음성과 비교해 특징적인 차이를 보였으며 외부적인 청각 환경에도 다른 반응 양상을 나타내었다. 따라서 구강안면통증 환자들의 기능적 장애를 보다 효율적으로 치료하기 위해서는 음악과 같은 긍정적인 정서 환경이 제공되어야 할 것으로 사료된다.

그래디언트와 상관관계의 국부통계를 이용한 얼굴 인식 (Face Recognition Using Local Statistics of Gradients and Correlations)

  • 구영애;소현주;김남철
    • 대한전자공학회논문지SP
    • /
    • 제48권3호
    • /
    • pp.19-29
    • /
    • 2011
  • 지금까지 많은 얼굴 인식 방법들이 제안되었으나, 대부분의 방법들은 특징추출 과정 없이 입력 영상을 1차원 형태의 벡터로 변형한 것을 1차원 특징 벡터로 사용하거나 또는 입력 영상 자체를 특징 매트릭스로 사용하였다. 이와같이 영상 자체를 특징으로 사용하면 조명변화가 심한 데이터베이스에서는 성능이 좋지 않는 것으로 알려져 있다. 본 논문에서는 조명변화에 효과적인 그래디언트와 상관관계의 국부통계를 이용하여 얼굴을 인식하는 방법을 제안하였다. BDIP(block difference of inverse probabilities)는 그래디언트의 국부 통계이다. 그리고 BVLC(block variation of local correlation coefficients)의 두 타입은 상관관계의 국부 통계이다. 입력영상이 얼굴인식 시스템에 들어 오면 먼저 BDIP, BVLC1, BVLC2의 특징 영상을 추출하고 융합한 후, (2D)2 PCA 변환을 거쳐 특징 매트릭스를 얻어서 훈련특징 매트릭스와의 거리를 구하여 최근린 분류기를 이용하여 얼굴 영상을 인식한다. 네 가지 얼굴 데이터베이스, FERET, Weizmann, Yale B, Yale에 대한 실험결과로부터, 제안한 방법이 실험한 여섯 가지 방법 중에서 조명과 얼굴 표정의 변화에 가장 견실하다는 것을 알 수 있었다.

PCA와 얼굴방향 정보를 이용한 얼굴인식 (Face recognition using PCA and face direction information)

  • 김승재
    • 한국정보전자통신기술학회논문지
    • /
    • 제10권6호
    • /
    • pp.609-616
    • /
    • 2017
  • 본 논문은 얼굴 인식에 있어 안정적인 인식률을 얻기 위해 입력 영상에 대한 좌우 회전정보를 사용하여 보다 안정적이며 높은 인식률을 내기위한 알고리즘을 제안한다. 제안하는 알고리즘은 웹 카메라 환경에서 얼굴 영상을 입력정보로 사용하여 향상된 인식률을 얻기 위해 영상의 사이즈 축소 및 밝기와 컬러에 대한 정보를 정규화한 후 전처리 과정을 거쳐 얼굴 영역만을 분할 검출한다. 검출된 후보 영역에 대해 주성분분석(PCA)을 적용하여 특징벡터를 구하여 얼굴을 분류한다. 또한 인식률의 오차 범위를 줄이기 위해 입력되는 얼굴 영상에 대한 방향성을 고려하여 좌 우 $45^{\circ}$ 회전 정보를 가진 영상을 대상으로 데이터 셋을 구성하여 PCA로 각각의 특징벡터를 구하였다. 구해진 특징벡터로 안정된 인식률을 얻기 위해 고유공간에 뿌린 후 각각의 특징들을 대상으로 유클리디안(euclidean distant) 거리를 비교하여 최종 얼굴을 인식한다. PCA에 의한 특징벡터는 저차원의 데이터이지만 얼굴을 표현하는데 있어 아무런 문제가 없으며 계산량이 적어 인식 속도도 빠를 수 있다. 본 논문에서 제안하는 방법은 기존의 다른 알고리즘에 비해 빠른 인식과 인식률의 안전성과 정확성을 향상시킬 수 있고 실시간 인식 시스템에도 사용할 수 있다.

특징벡터를 사용한 얼굴 영상 인식 연구 (A Study on Face Image Recognition Using Feature Vectors)

  • 김진숙;강진숙;차의영
    • 한국정보통신학회논문지
    • /
    • 제9권4호
    • /
    • pp.897-904
    • /
    • 2005
  • 영상 인식은 영상획득이 용이하다는 것과 실생활에서 광범위하게 사용될 수 있다는 것으로 인해 활발하게 연구되고 있는 분야이다. 그러나 얼굴영상은 높은 차원의 영상공간으로 인해 이미지 처리가 쉽지 않다. 본 논문은 얼굴 영상 데이터의 차원을 특징적인 벡터로 표현하고 이러한 특징벡터를 통해 얼굴 영상을 인식하는 방법은 제안한다. 제안되는 알고리즘은 두 부분으로 나뉜다. 첫째로는 칼라 영상을 그레이 영상으로 변환할 때 RGB 세 개의 플레인의 평균이 아닌 세 플레인의 주성분을 사용하는 PCA(Principal Component Analysis)를 적용한다. PCA는 칼라 영상을 그레이 영상으로 변환하는 과정과 인식률을 높이기 위한 영상 대비 개선 과정이 동시에 수행한다. 두 번째로는 PCA와 LDA(Linear Discriminant Analysis) 방식을 하나의 과정으로 통합하는 개선된 통합 LDA 방법이다. 두 과정을 통합함으로서 간결한 알고리즘 표현이 가능하며 분리된 단계에서 있을 수 있는 정보 손실을 방지할 수 있다. 제안된 알고리즘은 잘 제어된 대용량 얼굴 데이터베이스에서 개인을 확인하는 분야에 적용되어 성능을 향상시키고 있음을 보여주었고, 추후에는 실시간 상황에서 특정 개인을 확인하는 분야의 기초 알고리즘으로 적용될 수 있다.

얼굴의 움직임을 이용한 응시점 추적 (Head Orientation-based Gaze Tracking)

  • 고종국
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1999년도 가을 학술발표논문집 Vol.26 No.2 (2)
    • /
    • pp.401-403
    • /
    • 1999
  • 본 논문에서 우리는 제약이 없는 배경화면에서 얼굴의 움직임을 이용한 응시점 추적을 위해 얼굴의 특징점(눈, 코, 그리고 입)들을 찾고 head orientation을 구하는 효?거이고 빠른 방법을 제안한다. 얼굴을 찾는 방법이 많이 연구 되어 오고 있으나 많은 부분이 효과적이지 못하거나 제한적인 사항을 필요로 한다. 본 논문에서 제안한 방법은 이진화된 이미지에 기초하고 완전 그래프 매칭을 이용한 유사성을 구하는 방법이다. 즉, 임의의 임계치 값에 의해 이진화된 이미지를 레이블링 한 후 각 쌍의 블록에 대한 유사성을 구한다. 이때 두 눈과 가장 유사성을 갖는 두 블록을 눈으로 선택한다. 눈을 찾은 후 입과 코를 찾아간다. 360$\times$240 이미지의 평균 처리 속도는 0.2초 이내이고 다음 탐색영역을 예상하여 탐색 영역을 줄일 경우 평균 처리속도는 0.15초 이내였다. 그리고 본 논문에서는 얼굴의 움직임을 구하기 위해 각 특징점들이 이루는 각을 기준으로 한 템플릿 매칭을 이용했다. 실험은 다양한 조명환경과 여러 사용자를 대상으로 이루어졌고 속도와 정확성면에서 좋은 결과를 보였다. 도한, 명안정보만을 사용하므로 흑백가메라에서도 사용가능하여 경제적 효과도 기대할 수 있다.

  • PDF

Karhunen-Loeve 근사 방법과 Elastic Graph Matching을 병합한 얼굴 인식 (Face Recognition using Karhunen-Loeve projection and Elastic Graph Matching)

  • 이형지;이완수;정재호
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 하계종합학술대회 논문집(4)
    • /
    • pp.231-234
    • /
    • 2001
  • This paper proposes a face recognition technique that effectively combines elastic graph matching (EGM) and Fisherface algorithm. EGM as one of dynamic lint architecture uses not only face-shape but also the gray information of image, and Fisherface algorithm as a class specific method is robust about variations such as lighting direction and facial expression. In the proposed face recognition adopting the above two methods, the linear projection per node of an image graph reduces dimensionality of labeled graph vector and provides a feature space to be used effectively for the classification. In comparison with a conventional method, the proposed approach could obtain satisfactory results in the perspectives of recognition rates and speeds. Especially, we could get maximum recognition rate of 99.3% by leaving-one-out method for the experiments with the Yale Face Databases.

  • PDF

수정 윈도우를 이용한 얼굴 특징점의 추적 (Facial Feature Tracking With Modified Windows)

  • 김정선;조남익
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 제14회 신호처리 합동 학술대회 논문집
    • /
    • pp.169-172
    • /
    • 2001
  • 본 논문은 얼굴의 특징점 추적을 위하여 얼굴 회전 변환과의 크기 변환을 고려한 BMA(Block matching alogorithm)을 이용한 방법을 제안한다. 우선 얼굴의 크기 변화를 구하기 위하여 얼굴 영역을 분리하여 그 면적을 구한다. 이 면적을 이전 프레임에서 구한 얼굴 영역의 면적과 비교하여 크기 비례를 계산한다. 다음으로 각 특징점을 중심으로 하는 8방위 영역의 화소들로 집합을 설정한다. 집합을 설정할 때에는 얼굴의 크기 변화를 고려하여 영역 내 화소들을 포함하는 양을 수정한다. 그리고 새로운 영상에서 화소 집합간의 거리가 가장 작은 화소를 새로운 특징점으로 지정한다. 이 때, 회전 변화를 고려하여 화소 집합의 순서를 순차적으로 바꿔 집합 간 거리를 산출한다. 제안하는 방법은 회전과 크기 변환에 강인한 특성을 보일 뿐 아니라, 단순한 움직임 예측 방법인 BMA보다도 쉽고 빠르게 계산된다.

  • PDF

얼굴 특징자와 구조적 특징 각을 이용한 얼굴인식 알고리즘 (Face Recognition Algorithm Using Facial Features And Structural Feature Angles of Face)

  • 김정훈;김영일;이응주
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 제14회 신호처리 합동 학술대회 논문집
    • /
    • pp.143-146
    • /
    • 2001
  • 본 논문에서는 칼라 CCD 카메라로부터 입력된 얼굴 영상에서 HSI 정보와 눈, 코, 입 등의 얼굴 영역 특징자와 특징자들의 구조적 특징각을 이용한 얼굴 인식 알고리즘을 제안하였다. 제안한 알고리즘에서는 인간의 시각 체계와 비교적 유사한 HSI좌표계 상에서 피부색에 대한 색상 정보와 명암값 정보를 함께 이용함으로써 얼굴영역 추출의 효율을 높였고, 또한 추출된 얼굴 영역에서 얼굴 인식을 개선을 위해 눈, 코, 입 등의 구조적 위치 정보와 특징자들의 구조적 특징각인 θ/sub 1(ACRCD)/, θ/sub 2(ACRMD)/, θ/sub 3(ANRED)/, θ/sub 4(AMRED)/를 이용하여 얼굴 인식율을 개선하였다. 제안한 알고리즘에서는 기존의 명암 정보를 이용하는 방법과는 달리 색상 정보와 명암 정보 그리고 구조적특징각을 함께 이용함으로써 정확한 얼굴 영역의 검출이 가능하였으며 인식 방법에 있어서 특징자들의 구조적 관계값을 이용함으로써 인식 효율을 개선하였다.

  • PDF