International Journal of Computer Science & Network Security
/
제24권4호
/
pp.26-34
/
2024
Most human emotions are conveyed through facial expressions, which represent the predominant source of emotional data. This research investigates the impact of crowds on human emotions by analysing facial expressions. It examines how crowd behaviour, face recognition technology, and deep learning algorithms contribute to understanding the emotional change according to different level of crowd. The study identifies common emotions expressed during congestion, differences between crowded and less crowded areas, changes in facial expressions over time. The findings can inform urban planning and crowd event management by providing insights for developing coping mechanisms for affected individuals. However, limitations and challenges in using reliable facial expression analysis are also discussed, including age and context-related differences.
본 연구에서는 얼굴표정을 통하여 다른 사람의 정서 상태를 판단하는 능력이 연령(3세, 5세, 대학생), 성별(남, 여), 얼굴제시영역(얼굴전체, 눈), 정서의 종류(기본정서, 복합정서)에 따라 어떻게 다른지 알아보고자 하였다. 본 연구에서는 얼굴표정과 정서어휘 간의 연결이 비교적 분명하게 나타나는 32개의 정서 상태를 자극으로 사용하였으며, 표정사진은 32개의 정서 상태에 해당하는 얼굴표정을 배우에게 연기하도록 하여 사용하였다. 과제는 각 실험참가자에게 정서유발 상황에 대한 이야기를 들려주고 이야기 속의 주인공이 어떤 얼굴표정을 할 것인지를 판단하게 한 후 네 개의 얼굴표정 중에 적절한 것을 선택하도록 한 것이었다. 그 결과 연령이 증가함에 따라 얼굴표정을 판단하는 능력이 증가하였으며, 눈만 제시한 경우보다는 얼굴전체를 제시하였을 때, 복합정서보다는 기본정서에서 더 좋은 수행을 보였다. 또한 여자는 제시영역에 따른 수행의 차이가 없는 것에 반해, 남자는 눈 조건에 비해 얼굴조건의 경우에 더 좋은 수행을 보였다. 본 연구의 결과는 연령, 얼굴제시영역, 정서의 종류가 얼굴표정을 통해 타인의 정서를 판단하는데 영향을 줌을 시사한다.
본 연구에서는 감정을 표현하기 위한 표정 연습을 보조하는 인공지능을 개발하였다. 개발한 인공지능은 서술형 문장과 표정 이미지로 구성된 멀티모달 입력을 심층신경망에 사용하고 서술형 문장에서 예측되는 감정과 표정 이미지에서 예측되는 감정 사이의 유사도를 계산하여 출력하였다. 사용자는 서술형 문장으로 주어진 상황에 맞게 표정을 연습하고 인공지능은 서술형 문장과 사용자의 표정 사이의 유사도를 수치로 출력하여 피드백한다. 표정 이미지에서 감정을 예측하기 위해 ResNet34 구조를 사용하였으며 FER2013 공공데이터를 이용해 훈련하였다. 자연어인 서술형 문장에서 감정을 예측하기 위해 KoBERT 모델을 전이학습 하였으며 AIHub의 감정 분류를 위한 대화 음성 데이터 세트를 사용해 훈련하였다. 표정 이미지에서 감정을 예측하는 심층신경망은 65% 정확도를 달성하여 사람 수준의 감정 분류 능력을 보여주었다. 서술형 문장에서 감정을 예측하는 심층신경망은 90% 정확도를 달성하였다. 감정표현에 문제가 없는 일반인이 개발한 인공지능을 이용해 표정 연습 실험을 수행하여 개발한 인공지능의 성능을 검증하였다.
Objectives Schizophrenic patients have been shown to be impaired in both emotional self-awareness and recognition of others' facial emotions. Alexithymia refers to the deficits in emotional self-awareness. The relationship between alexithymia and recognition of others' facial emotions needs to be explored to better understand the characteristics of emotional deficits in schizophrenic patients. Methods Thirty control subjects and 31 schizophrenic patients completed the Toronto Alexithymia Scale-20-Korean version (TAS-20K) and facial emotion recognition task. The stimuli in facial emotion recognition task consist of 6 emotions (happiness, sadness, anger, fear, disgust, and neutral). Recognition accuracy was calculated within each emotion category. Correlations between TAS-20K and recognition accuracy were analyzed. Results The schizophrenic patients showed higher TAS-20K scores and lower recognition accuracy compared with the control subjects. The schizophrenic patients did not demonstrate any significant correlations between TAS-20K and recognition accuracy, unlike the control subjects. Conclusions The data suggest that, although schizophrenia may impair both emotional self-awareness and recognition of others' facial emotions, the degrees of deficit can be different between emotional self-awareness and recognition of others' facial emotions. This indicates that the emotional deficits in schizophrenia may assume more complex features.
본 연구에서는 동영상 자극과 정지 영상 자극을 사용하여 얼굴 표정의 영역(얼굴 전체/눈 영역/입 영역)에 따른 정서 상태 전달 효과를 알아보고자 하였다. 동영상 자극은 7초 동안 제시되었으며, 실험 1에서는 12개의 기본 정서에 대한 얼굴 표정 제시 유형과 제시 영역에 따른 정서 인식 효과를, 실험 2에서는 12개의 복합 정서에 대한 얼굴 표정 제시 유형과 제시 영역에 따른 정서 인식 효과를 살펴보았다. 실험 결과, 동영상 조건이 정지 영상 조건보다 더 높은 정서 인식 효과를 보였으며, 입 영역과 비교하였을 때 동영상에서의 눈 영역이 정지 영상 보다 더 큰 효과를 보여 눈의 움직임이 정서 인식에 중요할 것임을 시사하였다. 이는 기본 정서 뿐 아니라 복합 정서에서도 어느 정도 관찰될 수 있는 결과였다. 그럼에도 불구하고 정서의 종류에 따라 동영상의 효과가 달라질 수 있기 때문에 개별 정서별 분석이 필요하며, 또한, 얼굴의 특정 영역에 따라서도 상대적으로 잘 나타나는 정서 특성이 다를 수 있음을 사사해 준다.
International journal of advanced smart convergence
/
제8권2호
/
pp.8-17
/
2019
The main purpose of this study isto explore the potential of affective computing (AC) platforms in education through two phases ofresearch: Phase I - platform analysis and Phase II - classification of academic emotions. In Phase I, the results indicate that the existing affective analysis platforms can be largely classified into four types according to the emotion detecting methods: (a) facial expression-based platforms, (b) biometric-based platforms, (c) text/verbal tone-based platforms, and (c) mixed methods platforms. In Phase II, we conducted an in-depth analysis of the emotional experience that a learner encounters in online video-based learning in order to establish the basis for a new classification system of online learner's emotions. Overall, positive emotions were shown more frequently and longer than negative emotions. We categorized positive emotions into three groups based on the facial expression data: (a) confidence; (b) excitement, enjoyment, and pleasure; and (c) aspiration, enthusiasm, and expectation. The same method was used to categorize negative emotions into four groups: (a) fear and anxiety, (b) embarrassment and shame, (c) frustration and alienation, and (d) boredom. Drawn from the results, we proposed a new classification scheme that can be used to measure and analyze how learners in online learning environments experience various positive and negative emotions with the indicators of facial expressions.
We propose an emotional facial avatar that portrays the user's facial expressions with an emotional emphasis, while achieving visual and behavioral realism. This is achieved by unifying automatic analysis of facial expressions and animation of realistic 3D faces with details such as facial hair and hairstyles. To augment facial appearance according to the user's emotions, we use emotional templates representing typical emotions in an artistic way, which can be easily combined with the skin texture of the 3D face at runtime. Hence, our interface gives the user vision-based control over facial animation of the emotional avatar, easily changing its moods.
International Journal of Advanced Culture Technology
/
제12권2호
/
pp.375-385
/
2024
In the context of contemporary digital media, virtual influencers have become an increasingly important form of socialization and entertainment, in which emotional expression is a key factor in attracting viewers. In this study, we take Luo Tianyi, a Chinese virtual influencer, as an example to explore how emotions are expressed and perceived through facial expressions in different types of videos. Using Paul Ekman's Facial Action Coding System (FACS) and six basic emotion classifications, the study systematically analyzes Luo Tianyi's emotional expressions in three types of videos, namely Music show, Festivals and Brand Cooperation. During the study, Luo Tianyi's facial expressions and emotional expressions were analyzed through rigorous coding and categorization, as well as matching the context of the video content. The results show that Enjoyment is the most frequently expressed emotion by Luo Tianyi, reflecting the centrality of positive emotions in content creation. Meanwhile, the presence of other emotion types reveals the virtual influencer's efforts to create emotionally rich and authentic experiences. The frequency and variety of emotions expressed in different video genres indicate Luo Tianyi's diverse strategies for communicating and connecting with viewers in different contexts. The study provides an empirical basis for understanding and utilizing virtual influencers' emotional expressions, and offers valuable insights for digital media content creators to design emotional expression strategies. Overall, this study is valuable for understanding the complexity of virtual influencer emotional expression and its importance in digital media strategy.
In this paper, we propose a framework that automatically suggests emotion using emotion analysis method based on facial expression change. We use Microsoft's Emotion API to calculate and analyze emotion values in facial expressions to recognize emotions that change over time. In this step, we use standard deviations based on peak analysis to measure and classify emotional changes. The difference between the classified emotion and the normal emotion is calculated, and the difference is used to recognize the emotion abnormality. We match user's emotions to relatively relaxed emotions using histograms and emotional meshes. As a result, we provide relaxed emotions to users through images. The proposed framework helps users to recognize emotional changes easily and to train their emotions through emotional relaxation.
Background and Purpose: Facial emotion recognition deficits impact the daily life, particularly of Alzheimer's disease patients. We aimed to assess these deficits in the following three groups: subjective cognitive decline (SCD), mild cognitive impairment (MCI), and mild Alzheimer's dementia (AD). Additionally, we explored the associations between facial emotion recognition and cognitive performance. Methods: We used the Korean version of the Florida Facial Affect Battery (K-FAB) in 72 SCD, 76 MCI, and 76 mild AD subjects. The comparison was conducted using the analysis of covariance (ANCOVA), with adjustments being made for age and sex. The Mini-Mental State Examination (MMSE) was utilized to gauge the overall cognitive status, while the Seoul Neuropsychological Screening Battery (SNSB) was employed to evaluate the performance in the following five cognitive domains: attention, language, visuospatial abilities, memory, and frontal executive functions. Results: The ANCOVA results showed significant differences in K-FAB subtests 3, 4, and 5 (p=0.001, p=0.003, and p=0.004, respectively), especially for anger and fearful emotions. Recognition of 'anger' in the FAB subtest 5 declined from SCD to MCI to mild AD. Correlations were observed with age and education, and after controlling for these factors, MMSE and frontal executive function were associated with FAB tests, particularly in the FAB subtest 5 (r=0.507, p<0.001 and r=-0.288, p=0.026, respectively). Conclusions: Emotion recognition deficits worsened from SCD to MCI to mild AD, especially for negative emotions. Complex tasks, such as matching, selection, and naming, showed greater deficits, with a connection to cognitive impairment, especially frontal executive dysfunction.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.