Many recent events, such as terrorist attacks, exposed defects in most sophisticated security systems. Therefore, it is necessary to improve security data systems based on the body or behavioral characteristics, often called biometrics. Together with the growing interest in the development of human and computer interface and biometric identification, human face recognition has become an active research area. Face recognition appears to offer several advantages over other biometric methods. Nowadays, Principal Component Analysis (PCA) has been widely adopted for the face recognition algorithm. Yet still, PCA has limitations such as poor discriminatory power and large computational load. This paper proposes a novel algorithm for face recognition using a mid band frequency component of partial information which is used for PCA representation. Because the human face has even symmetry, half of a face is sufficient for face recognition. This partial information saves storage and computation time. In comparison with the traditional use of PCA, the proposed method gives better recognition accuracy and discriminatory power. Furthermore, the proposed method reduces the computational load and storage significantly.
A real-time face tracking is a broad topic, covering a large spectrum of technologies and applications. Briefly face tracking is a kind of tracing technique which follows human face in any directions. It needs some algorithms such as human face detection and motion controller to track face. Moreover, both processing time and calculation time are the most important factors that influence to drive tracking system. In this paper, two algorithms are used to find human face: earn-shift algorithm and face detection algorithm using OpenCV. Fuzzy controller is utilized to move pan-tilt camera system which can move four directions along to x-y axis.
Face verification has been widely studied during the past two decades. One of the challenges is the rising concern about the security and privacy of the template database. In this paper, we propose a secure face verification system which generates a unique secure cryptographic key from a face template. The face images are processed to produce face templates or codes to be utilized for the encryption and decryption tasks. The result identity data is encrypted using Advanced Encryption Standard (AES). Distance metric naming hamming distance and Euclidean distance are used for template matching identification process, where template matching is a process used in pattern recognition. The proposed system is tested on the ORL, YALEs, and PKNU face databases, which contain 360, 135, and 54 training images respectively. We employ Principle Component Analysis (PCA) to determine the most discriminating features among face images. The experimental results showed that the proposed distance measure was one the promising best measures with respect to different characteristics of the biometric systems. Using the proposed method we needed to extract fewer images in order to achieve 100% cumulative recognition than using any other tested distance measure.
Camera pose information from 2D face image is very important for making virtual 3D face model synchronize with the real face. It is also very important for any other uses such as: human computer interface, 3D object estimation, automatic camera control etc. In this paper, we have presented a camera position determination algorithm from a single 2D face image using the relationship between mouth position information and face region boundary information. Our algorithm first corrects the color bias by a lighting compensation algorithm, then we nonlinearly transformed the image into $YC_bC_r$ color space and use the visible chrominance feature of face in this color space to detect human face region. And then for face candidate, use the nearly reversed relationship information between $C_b\;and\;C_r$ cluster of face feature to detect mouth position. And then we use the geometrical relationship between mouth position information and face region boundary information to determine rotation angles in both x-axis and y-axis of camera position and use the relationship between face region size information and Camera-Face distance information to determine the camera-face distance. Experimental results demonstrate the validity of our algorithm and the correct determination rate is accredited for applying it into practice.
패턴 인식은 얼굴인식 영역에서 중요한 분야로 널리 사용 되고 있으며, 많은 연구가 이루어지고 있다. 얼굴 특징 점의 추출은 얼굴 인식 과정에서 중요한 단계로 정확한 얼굴 특징 추출은 인식기의 인식률에 가장 큰 영향을 미친다. 본 논문 에서는 능동형 이산 웨이브렛 변환을 통한 얼굴 특징 점 추출 방법을 제안했다. PC 카메라를 이용하여 취득된 얼굴 영상을 능동형 이산 웨이브렛 변환을 취하여 얼굴 영상 신호변환을 하였다. 변환된 영상 신호에 대하여 수직, 수평 투영법을 이용하여 얼굴 특징 추출을 하였으며, 추출 결과로부터 얼굴인식을 하였다. 제안된 능동형 이산 웨이브렛 변환은 얼굴 인식률 향상을 가져왔으며, 특징 점을 신속하고 정확하게 추출할 수 있었으며, 기존 이산 웨이브렛 변환을 이용한 특징 점 추출방식에 대하여 향상된 정확도와 안전성을 보였다.
본 논문에서는 몽타주 기법과 음영합성 기법을 이용한, 디자이너(예술가)의 감각을 살린 벡터 기반의 얼굴 생성 시스템을 제안한다. 제안하는 시스템은 사진으로부터 얼굴의 특징정보를 추출하여 사람의 얼굴과 유사한 얼굴을 자동으로 생성해 주는 시스템이며, 윤곽선만을 사용하던 기존의 얼굴 생성 시스템과 달리 컬러 기반이며, 음영을 사진으로부터 추출하여 이를 이목구비 이미지와 합성하여 생성하는 방식이다. 따라서 실사형에 좀 더 근접한 얼굴을 생성할 수 있다는 장점을 갖는다. 또, 벡터를 기반으로 하기 때문에 사이즈에 제한 얼이 자유로운 변형이 가능할 뿐만 아니라 디자이너 또는 그림 작가의 느낌을 결과물에 그대로 유지할 수 있도록 한다는 점에서 타 접근방식과의 차별성을 갖는다. 또, 2D 아바타에 자유로운 표정을 적용하는 데에도 쉽게 적용이 가능하다.
Computer vision and natural-language dialogue play an important role in friendly human-machine interfaces for service robots. In this paper we describe an integrated face detection and face recognition system for a welfare robot, which has also been combined with the robot's speech interface. Our approach to face detection is to combine neural network (NN) and genetic algorithm (GA): ANN serves as a face filter while GA is used to search the image efficiently. When the face is detected, embedded Hidden Markov Model (EMM) is used to determine its identity. A real-time system has been created by combining the face detection and recognition techniques. When motivated by the speaker's voice commands, it takes an image from the camera, finds the face inside the image and recognizes it. Experiments on an indoor environment with complex backgrounds showed that a recognition rate of more than 88% can be achieved.
The alignment of facial images is crucial for 2D face recognition. This is the same to facial meshes for 3D face recognition. Most of the 3D face recognition methods refer to 3D alignment but do not describe their approaches in details. In this paper, we focus on describing an automatic 3D alignment in viewpoint of quantitative analysis. This paper presents a framework of 3D face alignment and normalization based on feature points obtained by Active Shape Models (ASMs). The positions of eyes and mouth can give possibility of aligning the 3D face exactly in three-dimension space. The rotational transform on each axis is defined with respect to the reference position. In aligning process, the rotational transform converts an input 3D faces with large pose variations to the reference frontal view. The part of face is flopped from the aligned face using the sphere region centered at the nose tip of 3D face. The cropped face is shifted and brought into the frame with specified size for normalizing. Subsequently, the interpolation is carried to the face for sampling at equal interval and filling holes. The color interpolation is also carried at the same interval. The outputs are normalized 2D and 3D face which can be used for face recognition. Finally, we carry two sets of experiments to measure aligning errors and evaluate the performance of suggested process.
기존의 화상 회의 시스템에서는 카메라가 고정되어 있어서 사용자의 움직임에 제약을 주어 사용자를 부자연스럽게 한다. 이러한 부자연스러움을 해결하기 위해서는 얼굴의 움직임을 추적해야 하는데, 이때 얼굴 전체를 정보로 추적하는 것은 얼굴 전체를 하나의 특징으로 규정짓기도 힘들고 연산 시간이 많이 걸린다는 문제점을 가지고 있다. 따라서, 얼굴의 움직임을 효율적으로 추적하기 위해서는 얼굴상의 몇 개의 특징점을 이용하는 것이 바람직하다. 본 논문은 화상 회의에서 자연스러운 사용자 인터페이스를 위한 자동 얼굴 추적 시스템의 필수적인 요소인 눈 위치 검출의 효과적인 방법에 대하여 논한다. 눈은 얼굴 내에서 가장 뚜렷하며 단순한 특징을 가지고 있으므로 얼굴을 추적하기 위한 가장 중요한 정보가 된다. 본 논문에서 제안한 알고리즘은 얼굴 후보 영역 추출 단계를 거친 얼굴 후보 영역들에 대해 적용되며, 기존 방법들에 비해 조명에 특별한 제약을 받지 않으며 얼굴 크기와 안경에 대한 제약도 가지고 있지 않다. 또한, 화상 회의 환경에 대한 on-line 실험에서 좋은 결과를 나타냈다.
높은 수준의 지능형 영상 감시 시스템을 만족하기 위해서는 단순히 객체를 검출해서 분류하는 것뿐만 아니라 대상에 대한 정확한 신원 정보까지 확인할 수 있어야 한다. 사람을 구별하는 대표적인 얼굴 인식은 얼굴 자체의 가변성뿐만 아니라 조명, 배경, 카메라의 각도와 같은 외적요인에 따라 인식률의 변화가 발생한다. 본 논문에서는 다양한 실험을 통해 거리 변화에 의한 얼굴 영상의 크기 변화에 강인한 얼굴 인식 방법을 분석한다. 얼굴 인식 실험은 1m~5m에서 추출한 실제 거리별 얼굴 영상으로 이루어졌다. 실험결과, 1인당 학습 영상의 수가 많을 경우는 얼굴 특징 추출 방법으로 LDA를 사용한 방법이 전체 평균 75.4%로 가장 우수한 성능을 나타냈다. 하지만 1인당 학습 영상의 수가 5장 이하가 될 때는 CNN을 사용한 방법이 69.8%로 가장 우수한 성능을 나타냈다. 또한, 저해상도 얼굴 인식의 경우 얼굴 영상의 크기가 $15{\times}15$보다 작아지면 인식률이 급격히 감소함을 확인했다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.