• 제목/요약/키워드: Face super-resolution (SR)

검색결과 4건 처리시간 0.019초

A Novel Algorithm for Face Recognition From Very Low Resolution Images

  • Senthilsingh, C.;Manikandan, M.
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권2호
    • /
    • pp.659-669
    • /
    • 2015
  • Face Recognition assumes much significance in the context of security based application. Normally, high resolution images offer more details about the image and recognizing a face from a reasonably high resolution image would be easier when compared to recognizing images from very low resolution images. This paper addresses the problem of recognizing faces from a very low resolution image whose size is as low as $8{\times}8$. With the use of CCTV(Closed Circuit Television) and with other surveillance camera-based application for security purposes, the need to overcome the shortcomings with very low resolution images has been on the rise. The present day face recognition algorithms could not provide adequate performance when employed to recognize images from VLR images. Existing methods use super-resolution (SR) methods and Relation Based Super Resolution methods to construct from very low resolution images. This paper uses a learning based super resolution method to extract and construct images from very low resolution images. Experimental results show that the proposed SR algorithm based on relationship learning outperforms the existing algorithms in public face databases.

저해상도 영상 얼굴인식을 위한 전처리 방법 (Preprocessing Methods for Low-Resolution Face Image Recognition)

  • 이필규;김태윤;이다솔;김성재
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2017년도 추계학술발표대회
    • /
    • pp.781-784
    • /
    • 2017
  • 얼굴인식 시스템은 비접촉데이터 채집의 특성과 함께, 그 정확도가 점차 향상되고 있다. 공공 감시카메라와 같이 사진을 멀리서 찍는 상황에서는 저해상도의 얼굴 이미지로 인해 얼굴인식 시스템을 효과적으로 사용할 수 없는 경우가 있다. 이론적으로는 저해상도영상을 Super Resolution (SR) 방법으로 고해상도 영상으로 바꾸어 얼굴인식에 사용할 수 있지만, 기존의 SR 방법들은 얼굴 인식에 만족할만한 결과를 내지 못할 수 있다. 이 논문은 극 저해상도 (very low resolution) 얼굴인식 문제를 살펴보고 편미분방정식 기반 SR 방법을 제안하고, CNN 기반 얼굴인식 시스템에 응용한다.

Reconstructing 3-D Facial Shape Based on SR Imagine

  • Hong, Yu-Jin;Kim, Jaewon;Kim, Ig-Jae
    • Journal of International Society for Simulation Surgery
    • /
    • 제1권2호
    • /
    • pp.57-61
    • /
    • 2014
  • We present a robust 3D facial reconstruction method using a single image generated by face-specific super resolution technique. Based on the several consecutive frames with low resolution, we generate a single high resolution image and a three dimensional facial model based on it. To do this, we apply PME method to compute patch similarities for SR after two-phase warping according to facial attributes. Based on the SRI, we extract facial features automatically and reconstruct 3D facial model with basis which selected adaptively according to facial statistical data less than a few seconds. Thereby, we can provide the facial image of various points of view which cannot be given by a single point of view of a camera.

다중 스케일 얼굴 영역 딕셔너리의 적대적 증류를 이용한 얼굴 초해상화 (Face Super-Resolution using Adversarial Distillation of Multi-Scale Facial Region Dictionary)

  • 조병호;박인규;홍성은
    • 방송공학회논문지
    • /
    • 제26권5호
    • /
    • pp.608-620
    • /
    • 2021
  • 최근 딥러닝 기반의 얼굴 초해상화 연구는 일반적인 영상에 대한 초해상화 연구와 달리 인간의 얼굴이 가지는 구조적 혹은 의미론적인 특성을 반영한 안면 랜드마크 정보, 주요 영역 딕셔너리와 같은 사전 및 참조 정보를 사용하여 우수한 초해상화 결과를 보였다. 그러나 얼굴에 특화된 사전 정보를 사용할 시 추가적인 처리 소요 시간과 메모리를 요구하는 단점이 존재한다. 본 논문은 앞서 언급한 한계점을 극복하고자 지식 증류 기법을 활용한 효율적인 초해상화 모델을 제안한다. 주요 얼굴 영역 기반의 딕셔너리 정보를 사용하는 선생 모델에 지식 증류 기법을 적용하여 추론 시 랜드마크 정보와 부가적인 딕셔너리 사용이 필요 없는 학생 모델을 구축하였다. 제안하는 학생 모델은 특징맵 기반의 적대적 지식 증류를 통해 얼굴 주요 영역 딕셔너리를 가지고 있는 선생 모델로부터 학습을 진행하였다. 본 논문은 제안하는 학생 모델의 실험 결과를 통해 정량 및 정성적으로 우수함을 보이며 선생 모델의 연산량에 비해 90% 이상 절감되는 효율성을 증명한다.