본 논문에서는 얼굴과 동공을 검색하는 새로운 기법을 제시하며, 안전운행을 위한 운전자의 동공 감시에 적용한 실험결과를 포함하고 있다. 제시된 기법은 세 단계 주요 과정을 거치는데, 먼저 스킨칼라 세그먼테이션 기법으로 얼굴을 찾는 과정으로 이는 지금까지 사용된 휴리스틱모델이 아닌 학습과정 모델에 기반을 두고 있다. 다음에 얼굴 특징 세그먼테이션으로 눈, 입, 눈썹 등의 부분을 검출 하는데, 이를 위해 얼굴 각 부분에서 추출한 고유 특징들에 대한 PDF 추정을 사용하고 있다. 마지막으로 서큘러 하프 변환기법으로 눈 안의 동공을 찾아낸다. 제시된 기법을 조명이 다른 웹 얼굴 영상과 운전자의 CCD 얼굴 영상에 적용하여 동공을 찾아내는 실험을 하여, 높은 동공 검출율을 확인하였다.
본 논문에서는 한 개의 카메라와 한 대의 환등기(LCD 환등기 혹은 슬라이드 환등기)를 이용하여 2차원 얼굴 영상으로부터 3차원 얼굴 형상을 모델링하는 방법을 제안한다. 환등기를 이용하여 사람 얼굴에 라이트 빔을 투영하고 이를 조금씩 이동시키며 영상을 획득한 뒤 각 2차원 영상의 지역적 정보와 영상들 사이의 시간적 정보를 함께 이용하여 3차원 형상을 복원하는 방법을 채택하였다. 제안된 방법에서는 특정이 서로 다른 영역들의 효과적인 3차원 좌표 모델링을 위해 영상을 그림자 부분 얼굴 부분 그리고 머리카락 부분으로 나누어 처리하는 지역 분할(region segmentation) 기법을 도입하였고, 2차원 얼굴 영상 획득 시간을 줄이고 고속 3차원 스캔을 위하여 한 영상 안에 다수의 라이트 빔(multiple light beams)을 이용하였다. 또 한 라이트 빔의 경계를 정확하게 검출하기 위하여 라이트 빔 캘리브레이션(light beam calibration) 기법을 제안하여 사용하였다. 실험 결과 제안한 방법을 통해서 머리카락 부분을 포함한 전체 얼굴 영역에서 향상된 3차원 모델링 결과를 얻을 수 있었다.
In this paper we propose a method to detect human faces in color images. Many existing systems use a window-based classifier that scans the entire image for the presence of the human face and such systems suffers from scale variation, pose variation, illumination changes, etc. Here, we propose a lighting insensitive face detection method based upon the edge and skin tone information of the input color image. First, image enhancement is performed, especially if the image is acquired from an unconstrained illumination condition. Next, skin segmentation in YCbCr and RGB space is conducted. The result of skin segmentation is refined using the skin tone percentage index method. The edges of the input image are combined with the skin tone image to separate all non-face regions from candidate faces. Candidate verification using primitive shape features of the face is applied to decide which of the candidate regions corresponds to a face. The advantage of the proposed method is that it can detect faces that are of different sizes, in different poses, and that are making different expressions under unconstrained illumination conditions.
영상 분할은 영상처리 분야에서 오랜 기간 많은 연구자들에 의해 연구되었으며 현재도 다양한 방법이 연구되어지고 있다. 영상 분할은 영상에 포함된 객체들을 분리하는 문제로, 특히 사람의 얼굴은 영상에 포함된 객체들 중 가장 중요한 객체로 다루어진다. 본 논문에서는 영상에 포함된 얼굴 경계선을 추출하는 방법을 제안한다. 이를 위해 먼저 비올라존스 방법을 사용해 영상에서 대략적인 얼굴 위치를 검출한다. 그러나 비올라존스 알고리즘에 의해 검출된 결과는 얼굴의 대략적인 위치이지 정확한 얼굴 영역이 아니다. 본 논문에서는 비올라존스 알고리즘의 결과로부터 좀 더 정확한 얼굴 영역을 추출하기 위해 적응적 스킨칼라 모델을 사용하고 스킨칼라 모델의 결과로 주어지는 스킨영역에 대해 수평, 수직 히스토그램을 분석하여 얼굴 영역을 추출한다. 마지막으로 추출된 얼굴 영역에 대해 스네이크 알고리즘을 적용해 최종 얼굴 경계선을 결정한다. 본 논문에서는 Williams등[7]에 의해 제안된 스네이크 알고리즘을 기반으로 얼굴 경계선 추출을 위해 변형된 스네이크 에너지 함수를 제안한다.
본 논문에서는 복잡한 배경, 심한 조명 변화 등의 다양한 환경 변화에서도 얼굴을 정확히 검출하기 위하여 영역 분할을 이용한 얼굴 검출을 제안한다. 입력된 영상에서 배경요소들로, 인한 검출 오류를 줄이기 위하여 JSEG 방법을 사용하여 영상을 영역 단위로 분할한다. 분할된 각 영역에서 사전 정의된 피부색에 해당되는 픽셀들을 추출한다. 각 영역에서 추출된 픽셀들의 비율을 이용하여 얼굴 후보 영역을 결정한다. 그리고 결정된 얼굴 후보 영역에서 얼굴요소에 해당되는 눈과 눈썹이 위치 정보와 색상 정보를 이용하여 최종 얼굴 영역을 검출한다. 본 논문에서 제안한 방법을 이용하여 다양한 제약 조건을 지닌 영상들에 대하여 얼굴을 검출해본 결과, 배경이 복잡한 영상, 조명 변화가 심한 영상, 얼굴 크기가 다양한 영상, 얼굴이 다수 존재하는 영상들에서 좋은 검출 결과를 보여주었다.
본 논문에서는 색열화와 부분 은폐에 강인한 특성을 갖는 ID얼굴(identificable face: 신원확인가능 얼굴) 검지방법을 제안한다. 이 방법은 후보영역 분할, 후보창 추출, 은폐여부 판단의 세 단계로 구성된다. 후보영역 분할에서는 입력영상으로부터 피부색영역과 색열화된 얼굴구성요소(눈, 코, 입 영역)를 함께 찾아 E얼굴 후보영역을 분할한다. 후보창 추출에서는 후보영역내의 얼굴일 가능성이 있는 후보창들을 추출한다. 은폐여부 판단에서는 고유얼굴(eigenface)기법을 이용하여 고유얼굴들과 유사도가 가장 큰 후보창 하나가 결정되고, 이 후보창의 각 얼굴구성요소의 은폐되었는지 아닌지가 유사한 방법으로 결정된다. 실험결과, 제안한 검지방법은 색이 심하게 열화된 얼굴들과 은폐된 얼굴들을 포함하고 있는 얼굴 DB에서 색열화와 은폐를 고려하지 않은 얼굴검지방법에 비해 ID얼굴 검지율이 약 $11.4\%$ 향상됨을 확인하였다.
This paper describes an implementation of fast face detection algorithm. This algorithm can robustly detect human faces with unknown sizes and positions in complex backgrounds. This paper provides a powerful face detection algorithm using skin color segmenting. Skin Color is modeled by a Gaussian distribution in the HSI color space among different persons within the same race, Oriental. The main feature of the Algorithm is achieved face detection robust to illumination changes and a simple adaptive thresholding technique for skin color segmentation is employed to achieve robust face detection.
얼굴 인식 및 얼굴 생성이 다양한 분야에서 큰 주목을 받고 있지만, 얼굴 이미지를 모델 학습에 사용하는데 따른 개인 정보 문제는 최근 큰 문제가 되고 있다. 본 논문에서는 소수의 실제 얼굴 이미지와 안면 마스크 정보로부터 다양한 속성을 가진 얼굴 이미지를 생성함으로써 개인 정보 침해 이슈를 줄일 수 있는 얼굴 편집 네트워크를 제안한다. 다수의 실제 얼굴 영상을 이용하여 얼굴 속성을 학습하는 기존의 방법과 달리 제안하는 방법은 얼굴 분할 마스크와 얼굴 부분 텍스처 영상을 스타일 정보로 사용하여 새로운 얼굴 이미지를 생성한다. 이후 해당 이미지는 각 참조 이미지의 스타일과 위치를 학습하기 위한 훈련에 사용된다. 제안하는 네트워크가 학습되면 소수의 실제 얼굴 영상과 얼굴 분할 정보만을 사용하여 다양한 얼굴 이미지를 생성할 수 있다. 실험에서 제안 기법이 실제 얼굴 이미지를 매우 적게 사용함에도 불구하고 새로운 얼굴을 생성할 뿐만 아니라 얼굴 속성 편집을 지역화하여 수행할 수 있음을 보인다.
International Journal of Advanced Culture Technology
/
제9권4호
/
pp.385-391
/
2021
3D modeling of the human body is an integral part of computer graphics. Among them, several studies have been conducted on hair modeling, but there are generally few studies that effectively implement hair and face modeling simultaneously. This study has the originality of providing users with customized face modeling and hair modeling that is different from previous studies. For realistic hair styling, We design and realize hair segmentation using FCN, and we select the most appropriate model through comparing PSPNet, DeepLab V3+, and MobileNet. In this study, we use the open dataset named Figaro1k. Through the analysis of iteration and epoch parameters, we reach the optimized values of them. In addition, we experiment external parameters about the location of the camera, the color of the lighting, and the presence or absence of accessories. And the environmental analysis factors of the avatar maker were set and solutions to problems derived during the analysis process were presented.
얼굴 인식률 향상을 위해서는 전처리 단계에서의 영상 보정이 매우 중요하며, 특히 배경 잡음 제거는 얼굴 인식의 정확도에 중대한 영향을 미친다. 본 논문에서는 얼굴 인식률 향상을 위하여 전처리 단계에서 타원 모델을 이용하여 배경 영역을 제거하는 방법을 제안하였다. 사람의 얼굴 윤곽은 타원의 형태를 나타내기 때문에 얼굴 영상에서 타원 모델을 이용할 경우 얼굴 영역을 용이하게 검출할 수 있다. ETRI, ORL, 및 XM2VTS 얼굴 데이터베이스에 대한 실험 분석을 통하여 제안된 방법이 얼굴 인식 성능을 뚜렷하게 개선시켰음을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.