• 제목/요약/키워드: Face recognition model

검색결과 298건 처리시간 0.026초

포즈 변화에 강인한 얼굴 인식 (Face Recognition Robust to Pose Variations)

  • 노진우;문인혁;고한석
    • 대한전자공학회논문지SP
    • /
    • 제41권5호
    • /
    • pp.63-69
    • /
    • 2004
  • 본 논문에서는 포즈 변화에 강인한 얼굴 인식을 위하여 원통 모델을 이용하는 방법을 제안한다. 얼굴 모양이 원통형이라는 가정 하에 입력 영상으로부터 대상의 포즈를 예측하고, 예측된 포즈 각도만큼 포즈 변환을 실시하여 정면 얼굴 영상을 획득한다. 이렇게 획득한 정면 영상을 얼굴 인식에 적용함으로써 얼굴 인식률을 향상시킬 수 있다. 실험 결과, 포즈 변환을 통하여 인식률이 61.43%에서 93.76%로 향상되었음을 볼 수 있었으며, 보다 복잡한 3차원 얼굴 모델을 이용한 결과와 비교하였을 때 비교적 양호한 인식률을 갖는 것을 확인하였다.

Masked Face Recognition via a Combined SIFT and DLBP Features Trained in CNN Model

  • Aljarallah, Nahla Fahad;Uliyan, Diaa Mohammed
    • International Journal of Computer Science & Network Security
    • /
    • 제22권6호
    • /
    • pp.319-331
    • /
    • 2022
  • The latest global COVID-19 pandemic has made the use of facial masks an important aspect of our lives. People are advised to cover their faces in public spaces to discourage illness from spreading. Using these face masks posed a significant concern about the exactness of the face identification method used to search and unlock telephones at the school/office. Many companies have already built the requisite data in-house to incorporate such a scheme, using face recognition as an authentication. Unfortunately, veiled faces hinder the detection and acknowledgment of these facial identity schemes and seek to invalidate the internal data collection. Biometric systems that use the face as authentication cause problems with detection or recognition (face or persons). In this research, a novel model has been developed to detect and recognize faces and persons for authentication using scale invariant features (SIFT) for the whole segmented face with an efficient local binary texture features (DLBP) in region of eyes in the masked face. The Fuzzy C means is utilized to segment the image. These mixed features are trained significantly in a convolution neural network (CNN) model. The main advantage of this model is that can detect and recognizing faces by assigning weights to the selected features aimed to grant or provoke permissions with high accuracy.

얼굴의 다양한 포즈 및 표정의 변환에 따른 얼굴 인식률 향상에 관한 연구 (A Study on Improvement of Face Recognition Rate with Transformation of Various Facial Poses and Expressions)

  • 최재영;황보 택근;김낙빈
    • 인터넷정보학회논문지
    • /
    • 제5권6호
    • /
    • pp.79-91
    • /
    • 2004
  • 다양한 얼굴 포즈 검출 및 인식은 매우 어려운 문제로서, 이는 특징 공간상의 다양한 포즈의 분포가 정면 영상에 비해 매우 흩어져있고 복잡하기 때문이다. 이에 본 논문에서는 기존의 얼굴 인식 방법들이 제한 사항으로 두었던 입력 영상의 다양한 포즈 및 표정에 강인한 얼굴 인식 시스템을 제안하였다. 제안한 방법은 먼저, TLS 모델을 사용하여 얼굴 영역을 검출한 뒤, 얼굴의 구성요소를 통하여 얼굴 포즈를 추정한다. 추정된 얼굴 포즈는 3차원 X-Y-Z축으로 분해되는데, 두 번째 과정에서는 추정된 벡터를 통하여 만들어진 가변 템플릿과 3D CAN/DIDE모델을 이용하여 얼굴을 정합한다 마지막으로 정합된 얼굴은 분석된 포즈와 표정에 의하여 얼굴 인식에 적합한 정면의 정규화 된 얼굴로 변환된다. 실험을 통하여 얼굴 검출 모델의 사용과 포즈 추정 방법의 타당성을 보였으며, 포즈 및 표정 정규화를 통하여 인식률이 향상됨을 확인하였다.

  • PDF

가버 특징 벡터 조명 PCA 모델 기반 강인한 얼굴 인식 (Robust Face Recognition based on Gabor Feature Vector illumination PCA Model)

  • 설태인;김상훈;정선태;조성원
    • 전자공학회논문지SC
    • /
    • 제45권6호
    • /
    • pp.67-76
    • /
    • 2008
  • 성공적인 상업화를 위해서는 다양한 조명 환경에서 신뢰성 있는 얼굴 인식이 필요하다. 특징 벡터 기반 얼굴 인식에서 특징 벡터를 잘 선택하는 것은 중요하다. 가버 특징 벡터는 다른 특징 벡터보다도 상대적으로 방향, 자세, 조명 등의 영향을 덜 받는 것으로 잘 알려져 있어 얼굴 인식의 특징 벡터로 많이 이용된다. 그러나 조명의 영향에 대해 완전히 독립적이지 못하다. 본 논문에서는 얼굴 이미지의 가버 특징 벡터에 대한 조명 PCA 모델의 구성을 제안하고 이를 이용하여 조명에 독립적인 얼굴 고유의 특성을 나타내는 가버 특징 벡터만을 분리해내고 이를 이용한 얼굴 인식 방법을 제시한다. 가버 특징 벡터 조명 PCA 모델은 가버 특징 벡터공간을 조명 영향 부분공간과 얼굴 고유특성 부분공간의 직교 분해로 구성한다. 얼굴 고유특성 부분공간으로 투영하여 얻어진 가버 특징 벡터는 조명 영향을 분리해 내었기 때문에 이를 이용한 얼굴 인식은 조명에 보다 강인하게 된다. 실험을 통해서 가버 특징 벡터 조명 PCA 모델을 이용한 제안된 얼굴 인식 방식이 다양한 자세에서 조명에 대해 보다 신뢰성 있게 동작함을 확인하였다.

Low Resolution Rate Face Recognition Based on Multi-scale CNN

  • Wang, Ji-Yuan;Lee, Eung-Joo
    • 한국멀티미디어학회논문지
    • /
    • 제21권12호
    • /
    • pp.1467-1472
    • /
    • 2018
  • For the problem that the face image of surveillance video cannot be accurately identified due to the low resolution, this paper proposes a low resolution face recognition solution based on convolutional neural network model. Convolutional Neural Networks (CNN) model for multi-scale input The CNN model for multi-scale input is an improvement over the existing "two-step method" in which low-resolution images are up-sampled using a simple bi-cubic interpolation method. Then, the up sampled image and the high-resolution image are mixed as a model training sample. The CNN model learns the common feature space of the high- and low-resolution images, and then measures the feature similarity through the cosine distance. Finally, the recognition result is given. The experiments on the CMU PIE and Extended Yale B datasets show that the accuracy of the model is better than other comparison methods. Compared with the CMDA_BGE algorithm with the highest recognition rate, the accuracy rate is 2.5%~9.9%.

Invariant Range Image Multi-Pose Face Recognition Using Fuzzy c-Means

  • Phokharatkul, Pisit;Pansang, Seri
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1244-1248
    • /
    • 2005
  • In this paper, we propose fuzzy c-means (FCM) to solve recognition errors in invariant range image, multi-pose face recognition. Scale, center and pose error problems were solved using geometric transformation. Range image face data was digitized into range image data by using the laser range finder that does not depend on the ambient light source. Then, the digitized range image face data is used as a model to generate multi-pose data. Each pose data size was reduced by linear reduction into the database. The reduced range image face data was transformed to the gradient face model for facial feature image extraction and also for matching using the fuzzy membership adjusted by fuzzy c-means. The proposed method was tested using facial range images from 40 people with normal facial expressions. The output of the detection and recognition system has to be accurate to about 93 percent. Simultaneously, the system must be robust enough to overcome typical image-acquisition problems such as noise, vertical rotated face and range resolution.

  • PDF

2차원 PCA 얼굴 고유 식별 특성 부분공간 모델 기반 강인한 얼굴 인식 (Robust Face Recognition based on 2D PCA Face Distinctive Identity Feature Subspace Model)

  • 설태인;정선태;김상훈;장언동;조성원
    • 대한전자공학회논문지SP
    • /
    • 제47권1호
    • /
    • pp.35-43
    • /
    • 2010
  • 고유얼굴 기반 얼굴 인식 방법과 같은 얼굴 형태 기반 얼굴 인식 방법에 사용되는 1차원 PCA는 고차원의 얼굴 형태 데이터 벡터들의 처리로 인하여 부정확한 얼굴 표현과 과도한 계산량을 초래할 수 있다. 이에 개선 방안의 하나로 2차원 PCA 기반 얼굴 인식 방법이 개발되었다. 그러나 단순한 2차원 PCA 적용으로 얻어진 얼굴 표현 모델에는 얼굴 공통 특성 성분과 개인 식별 특성 성분이 모두 포함된다. 얼굴 공통 특성 성분은 오히려 개인 식별 능력을 방해할 수가 있고 또한 인식 처리 시간의 증가를 초래한다. 본 논문에서는 2차원 PCA 적용으로 얻어진 얼굴 특성 공간에서 얼굴 공통 특성 영향이 분리된 얼굴 고유 식별 특성 부분공간 모델을 개발하고 개발된 모델에 기반한 새로운 강인한 얼굴 인식 방법을 제안한다. 제안한 얼굴 고유식별 특성 부분공간 모델 기반 얼굴 인식 방법은 얼굴 고유 식별 특성에만 주로 의존하기 때문에 기존 1차원 PCA 및 2차원 PCA 기반 얼굴 인식 방법보다 얼굴 인식 성능 및 인식 속도에 대해서 더 우수한 성능을 보인다. 이는 다양한 조명 조건하에 다양한 얼굴 자세를 갖는 얼굴 이미지들로 구성된 Yale A 및 IMM 얼굴 데이터베이스를 이용한 실험을 통해 확인하였다.

A Study of Machine Learning based Face Recognition for User Authentication

  • Hong, Chung-Pyo
    • 반도체디스플레이기술학회지
    • /
    • 제19권2호
    • /
    • pp.96-99
    • /
    • 2020
  • According to brilliant development of smart devices, many related services are being devised. And, almost every service is designed to provide user-centric services based on personal information. In this situation, to prevent unintentional leakage of personal information is essential. Conventionally, ID and Password system is used for the user authentication. This is a convenient method, but it has a vulnerability that can cause problems due to information leakage. To overcome these problem, many methods related to face recognition is being researched. Through this paper, we investigated the trend of user authentication through biometrics and a representative model for face recognition techniques. One is DeepFace of FaceBook and another is FaceNet of Google. Each model is based on the concept of Deep Learning and Distance Metric Learning, respectively. And also, they are based on Convolutional Neural Network (CNN) model. In the future, further research is needed on the equipment configuration requirements for practical applications and ways to provide actual personalized services.

원통 모델과 스테레오 카메라를 이용한 포즈 변화에 강인한 얼굴인식 (Pose-invariant Face Recognition using a Cylindrical Model and Stereo Camera)

  • 노진우;홍정화;고한석
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권7호
    • /
    • pp.929-938
    • /
    • 2004
  • 본 논문에서는 원통모델과 스테레오 카메라를 이용하여 대상의 포즈 변화에 강인한 얼굴인식 방법을 제안한다. 입력으로 하나의 영상을 취할 수 있는 경우와 스테레오 영상을 취할 수 있는 경우의 두 가지로 나누어 다룬다. 단일 입력 영상인 경우 정면이 아닌 입력 영상에 대하여 원통 모델을 이용하여 좌우방향(yaw)으로 포즈를 보상하고, 스테레오 입력 영상인 경우 스테레오 기하학을 이용하여 예측된 상하방향(pitch) 포즈로 대상의 상하 변화까지 보상한다. 또한 스테레오 카메라를 통하여 동시에 두 개의 영상을 얻는다는 장점이 있기 때문에 결정 단계 융합(decision-level fusion) 방법을 이용하여 전체적인 인식률을 향상시킨다. 실험 결과, 좌우 포즈 변환을 통하여 인식률이 61.43%에서 94.76%로 향상되었음을 볼 수 있었고, 보다 복잡한 3차원 얼굴 모델과의 비교 결과 인식률이 양호함을 확인할 수 있었다. 또한 스테레오 카메라 시스템을 이용하여 얼굴이 위로 향한 영상일 경우 5.24%의 인식률을 향상시켰고, 결정 단계융합에 의해 추가로 3.34%의 인식률을 향상시킬 수 있었다.

모델 기반 얼굴에서 특징점 추출 (Features Detection in Face eased on The Model)

  • 석경휴;김용수;김동국;배철수;나상동
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2002년도 춘계종합학술대회
    • /
    • pp.134-138
    • /
    • 2002
  • The human faces do not have distinct features unlike other general objects. In general the features of eyes, nose and mouth which are first recognized when human being see the face are defined. These features have different characteristics depending on different human face. In this paper, We propose a face recognition algorithm using the hidden Markov model(HMM). In the preprocessing stage, we find edges of a face using the locally adaptive threshold scheme and extract features based on generic knowledge of a face, then construct a database with extracted features. In training stage, we generate HMM parameters for each person by using the forward-backward algorithm. In the recognition stage, we apply probability values calculated by the HMM to input data. Then the input face is recognized by the euclidean distance of face feature vector and the cross-correlation between the input image and the database image. Computer simulation shows that the proposed HMM algorithm gives higher recognition rate compared with conventional face recognition algorithms.

  • PDF