본 논문에서는 포즈 변화에 강인한 얼굴 인식을 위하여 원통 모델을 이용하는 방법을 제안한다. 얼굴 모양이 원통형이라는 가정 하에 입력 영상으로부터 대상의 포즈를 예측하고, 예측된 포즈 각도만큼 포즈 변환을 실시하여 정면 얼굴 영상을 획득한다. 이렇게 획득한 정면 영상을 얼굴 인식에 적용함으로써 얼굴 인식률을 향상시킬 수 있다. 실험 결과, 포즈 변환을 통하여 인식률이 61.43%에서 93.76%로 향상되었음을 볼 수 있었으며, 보다 복잡한 3차원 얼굴 모델을 이용한 결과와 비교하였을 때 비교적 양호한 인식률을 갖는 것을 확인하였다.
International Journal of Computer Science & Network Security
/
제22권6호
/
pp.319-331
/
2022
The latest global COVID-19 pandemic has made the use of facial masks an important aspect of our lives. People are advised to cover their faces in public spaces to discourage illness from spreading. Using these face masks posed a significant concern about the exactness of the face identification method used to search and unlock telephones at the school/office. Many companies have already built the requisite data in-house to incorporate such a scheme, using face recognition as an authentication. Unfortunately, veiled faces hinder the detection and acknowledgment of these facial identity schemes and seek to invalidate the internal data collection. Biometric systems that use the face as authentication cause problems with detection or recognition (face or persons). In this research, a novel model has been developed to detect and recognize faces and persons for authentication using scale invariant features (SIFT) for the whole segmented face with an efficient local binary texture features (DLBP) in region of eyes in the masked face. The Fuzzy C means is utilized to segment the image. These mixed features are trained significantly in a convolution neural network (CNN) model. The main advantage of this model is that can detect and recognizing faces by assigning weights to the selected features aimed to grant or provoke permissions with high accuracy.
다양한 얼굴 포즈 검출 및 인식은 매우 어려운 문제로서, 이는 특징 공간상의 다양한 포즈의 분포가 정면 영상에 비해 매우 흩어져있고 복잡하기 때문이다. 이에 본 논문에서는 기존의 얼굴 인식 방법들이 제한 사항으로 두었던 입력 영상의 다양한 포즈 및 표정에 강인한 얼굴 인식 시스템을 제안하였다. 제안한 방법은 먼저, TLS 모델을 사용하여 얼굴 영역을 검출한 뒤, 얼굴의 구성요소를 통하여 얼굴 포즈를 추정한다. 추정된 얼굴 포즈는 3차원 X-Y-Z축으로 분해되는데, 두 번째 과정에서는 추정된 벡터를 통하여 만들어진 가변 템플릿과 3D CAN/DIDE모델을 이용하여 얼굴을 정합한다 마지막으로 정합된 얼굴은 분석된 포즈와 표정에 의하여 얼굴 인식에 적합한 정면의 정규화 된 얼굴로 변환된다. 실험을 통하여 얼굴 검출 모델의 사용과 포즈 추정 방법의 타당성을 보였으며, 포즈 및 표정 정규화를 통하여 인식률이 향상됨을 확인하였다.
성공적인 상업화를 위해서는 다양한 조명 환경에서 신뢰성 있는 얼굴 인식이 필요하다. 특징 벡터 기반 얼굴 인식에서 특징 벡터를 잘 선택하는 것은 중요하다. 가버 특징 벡터는 다른 특징 벡터보다도 상대적으로 방향, 자세, 조명 등의 영향을 덜 받는 것으로 잘 알려져 있어 얼굴 인식의 특징 벡터로 많이 이용된다. 그러나 조명의 영향에 대해 완전히 독립적이지 못하다. 본 논문에서는 얼굴 이미지의 가버 특징 벡터에 대한 조명 PCA 모델의 구성을 제안하고 이를 이용하여 조명에 독립적인 얼굴 고유의 특성을 나타내는 가버 특징 벡터만을 분리해내고 이를 이용한 얼굴 인식 방법을 제시한다. 가버 특징 벡터 조명 PCA 모델은 가버 특징 벡터공간을 조명 영향 부분공간과 얼굴 고유특성 부분공간의 직교 분해로 구성한다. 얼굴 고유특성 부분공간으로 투영하여 얻어진 가버 특징 벡터는 조명 영향을 분리해 내었기 때문에 이를 이용한 얼굴 인식은 조명에 보다 강인하게 된다. 실험을 통해서 가버 특징 벡터 조명 PCA 모델을 이용한 제안된 얼굴 인식 방식이 다양한 자세에서 조명에 대해 보다 신뢰성 있게 동작함을 확인하였다.
For the problem that the face image of surveillance video cannot be accurately identified due to the low resolution, this paper proposes a low resolution face recognition solution based on convolutional neural network model. Convolutional Neural Networks (CNN) model for multi-scale input The CNN model for multi-scale input is an improvement over the existing "two-step method" in which low-resolution images are up-sampled using a simple bi-cubic interpolation method. Then, the up sampled image and the high-resolution image are mixed as a model training sample. The CNN model learns the common feature space of the high- and low-resolution images, and then measures the feature similarity through the cosine distance. Finally, the recognition result is given. The experiments on the CMU PIE and Extended Yale B datasets show that the accuracy of the model is better than other comparison methods. Compared with the CMDA_BGE algorithm with the highest recognition rate, the accuracy rate is 2.5%~9.9%.
In this paper, we propose fuzzy c-means (FCM) to solve recognition errors in invariant range image, multi-pose face recognition. Scale, center and pose error problems were solved using geometric transformation. Range image face data was digitized into range image data by using the laser range finder that does not depend on the ambient light source. Then, the digitized range image face data is used as a model to generate multi-pose data. Each pose data size was reduced by linear reduction into the database. The reduced range image face data was transformed to the gradient face model for facial feature image extraction and also for matching using the fuzzy membership adjusted by fuzzy c-means. The proposed method was tested using facial range images from 40 people with normal facial expressions. The output of the detection and recognition system has to be accurate to about 93 percent. Simultaneously, the system must be robust enough to overcome typical image-acquisition problems such as noise, vertical rotated face and range resolution.
고유얼굴 기반 얼굴 인식 방법과 같은 얼굴 형태 기반 얼굴 인식 방법에 사용되는 1차원 PCA는 고차원의 얼굴 형태 데이터 벡터들의 처리로 인하여 부정확한 얼굴 표현과 과도한 계산량을 초래할 수 있다. 이에 개선 방안의 하나로 2차원 PCA 기반 얼굴 인식 방법이 개발되었다. 그러나 단순한 2차원 PCA 적용으로 얻어진 얼굴 표현 모델에는 얼굴 공통 특성 성분과 개인 식별 특성 성분이 모두 포함된다. 얼굴 공통 특성 성분은 오히려 개인 식별 능력을 방해할 수가 있고 또한 인식 처리 시간의 증가를 초래한다. 본 논문에서는 2차원 PCA 적용으로 얻어진 얼굴 특성 공간에서 얼굴 공통 특성 영향이 분리된 얼굴 고유 식별 특성 부분공간 모델을 개발하고 개발된 모델에 기반한 새로운 강인한 얼굴 인식 방법을 제안한다. 제안한 얼굴 고유식별 특성 부분공간 모델 기반 얼굴 인식 방법은 얼굴 고유 식별 특성에만 주로 의존하기 때문에 기존 1차원 PCA 및 2차원 PCA 기반 얼굴 인식 방법보다 얼굴 인식 성능 및 인식 속도에 대해서 더 우수한 성능을 보인다. 이는 다양한 조명 조건하에 다양한 얼굴 자세를 갖는 얼굴 이미지들로 구성된 Yale A 및 IMM 얼굴 데이터베이스를 이용한 실험을 통해 확인하였다.
According to brilliant development of smart devices, many related services are being devised. And, almost every service is designed to provide user-centric services based on personal information. In this situation, to prevent unintentional leakage of personal information is essential. Conventionally, ID and Password system is used for the user authentication. This is a convenient method, but it has a vulnerability that can cause problems due to information leakage. To overcome these problem, many methods related to face recognition is being researched. Through this paper, we investigated the trend of user authentication through biometrics and a representative model for face recognition techniques. One is DeepFace of FaceBook and another is FaceNet of Google. Each model is based on the concept of Deep Learning and Distance Metric Learning, respectively. And also, they are based on Convolutional Neural Network (CNN) model. In the future, further research is needed on the equipment configuration requirements for practical applications and ways to provide actual personalized services.
본 논문에서는 원통모델과 스테레오 카메라를 이용하여 대상의 포즈 변화에 강인한 얼굴인식 방법을 제안한다. 입력으로 하나의 영상을 취할 수 있는 경우와 스테레오 영상을 취할 수 있는 경우의 두 가지로 나누어 다룬다. 단일 입력 영상인 경우 정면이 아닌 입력 영상에 대하여 원통 모델을 이용하여 좌우방향(yaw)으로 포즈를 보상하고, 스테레오 입력 영상인 경우 스테레오 기하학을 이용하여 예측된 상하방향(pitch) 포즈로 대상의 상하 변화까지 보상한다. 또한 스테레오 카메라를 통하여 동시에 두 개의 영상을 얻는다는 장점이 있기 때문에 결정 단계 융합(decision-level fusion) 방법을 이용하여 전체적인 인식률을 향상시킨다. 실험 결과, 좌우 포즈 변환을 통하여 인식률이 61.43%에서 94.76%로 향상되었음을 볼 수 있었고, 보다 복잡한 3차원 얼굴 모델과의 비교 결과 인식률이 양호함을 확인할 수 있었다. 또한 스테레오 카메라 시스템을 이용하여 얼굴이 위로 향한 영상일 경우 5.24%의 인식률을 향상시켰고, 결정 단계융합에 의해 추가로 3.34%의 인식률을 향상시킬 수 있었다.
The human faces do not have distinct features unlike other general objects. In general the features of eyes, nose and mouth which are first recognized when human being see the face are defined. These features have different characteristics depending on different human face. In this paper, We propose a face recognition algorithm using the hidden Markov model(HMM). In the preprocessing stage, we find edges of a face using the locally adaptive threshold scheme and extract features based on generic knowledge of a face, then construct a database with extracted features. In training stage, we generate HMM parameters for each person by using the forward-backward algorithm. In the recognition stage, we apply probability values calculated by the HMM to input data. Then the input face is recognized by the euclidean distance of face feature vector and the cross-correlation between the input image and the database image. Computer simulation shows that the proposed HMM algorithm gives higher recognition rate compared with conventional face recognition algorithms.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.